
ISRAEL J O U R N A L  OF M A T H E M A T I C S  112  (1999) ,  187-235 

PRIME IDEALS IN HOPF GALOIS EXTENSIONS 

BY 

S. MONTGOMERY 

Department of Mathematics, University of Southern California 
Los Angeles, CA 90089-1113, USA 
e-mail: smontgom@math.usc.edu 

AND 

H.-J .  SCHNEIDER 

Mathematisches Institut, Universit~it Miinchen 
Thevesienstra•e 39, D-80333 Munich, Germany 

e-mail: hanssch@rz.mathematik.uni-muenchen.de 

A B S T R A C T  

For a finite-dimensional Hopf algebra H, we study the prime ideals in 
a faithfully flat H-Hopf-Galois extension R C A. One application is to 
quotients of Hopf algebras which arise in the theory of quantum groups 
at a root of 1. For the Krull relations between R and A, we obtain our 
best results when H is semisolvable; these results generalize earlier known 
results for crossed products for a group action and for algebras graded by 
a finite group. We also show that if H is semisimple and semisolvable, 
then A is semiprime provided R is H-semiprime. 

0. I n t r o d u c t i o n  

Let H be a f ini te-dimensional  Hopf algebra over a field k and R C A a faithfully 

flat H-Galo i s  extension.  Intuit ively,  the algebra extension R c A represents an 

ep imorphism of q u a n t u m  spaces which is a principal  bundle  with fibre being the 

q u a n t u m  group corresponding to H (where the category of q u a n t u m  groups is 

the dual  category to the category of Hopf algebras). Formally, faithfully flat 

H-Galo i s  extensions are defined as follows (see [M, Chapter  8]): 
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Let A be a right H-comodule algebra with structure map p : A --+ A ® H,  that 

is an algebra map such that  A is an H-comodule via p. Define 

R : =  AC°H= { a e  A I p ( a )  = a ® l } ,  

the algebra of H-coinvariant elements of A. Then R C A is f a i th fu l ly  flat  

H - G a l o i s  if the Galois map 

A ~R A --+ A ® H, x ® y ~ xp(y), 

is bijective, and A is faithfully flat as a left (or equivalently right) R-module. 

The object of this paper is to compare the prime ideals of R and of A, with 

particular interest in the classical Krull relations. Since Hopf crossed products 

A = R # ~ H  give examples of faithfully flat Galois extensions (see [M, Chapter 

7]), our results apply to crossed products. Another important class of examples 

we have in mind are Hopf algebras A with a normal sub Hopf algebra R of finite 

index; if A is faithfully flat over R, then R C A is faithfully flat H-Galois where 

H := A / A R  + is the quotient Hopf algebra. Interesting examples of such Hopf 

algebra extensions occur in the theory of quantum groups when the deformation 

parameter  is a root of unity. 

For the Krull relations we obtain our best results when H has a normal series 

whose quotients are commutative or cocommutative; this generalizes our earlier 

work [MS] as well as work of Lorenz and Passman for crossed products of groups 

[LP] and work of Cohen and the first author for smash products over group-graded 

rings [CM]. As a consequence we make progress on the question of when R being 

H-prime and H being semisimple implies that R # H  is semiprime, although the 

general question remains open. 

A major motivation for studying Galois extensions rather than crossed prod- 

ucts is that  crossed products are not transitive, by an example of the second 

author [$3]. That  is, if A = R # o H  is a crossed product, K a normal Hopf 

subalgebra of H with quotient /~,  then it is false in general that one can write 

A = ( R # ~ K ) ~ - [ I .  As shown in Section 6, however, faithfully flat Galois exten- 

sions are transitive, and thus inductive arguments are possible. Hence to obtain 

results on smash products by inductive arguments it is necessary to study general 

faithfully flat Galois extensions. On the other hand, it turns out that usually the 

hard case is the case of an arbitrary smash product extension. If H is given, then 

some property should hold for all faithfully flat H-Galois extensions R C A if it 

holds for all smash products R C R # H .  

Smash product extensions R C R # H  are normalizing extensions when H is 
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a group algebra, but not in general. Hence the rich theory of prime ideals in 

normalizing ring extensions (see [McR]) does not apply here. 

OUTLINE OF THE PAPER. In Section 1 we introduce the notion of H-stable 

ideals of R, where R C A is faithfully flat H-Galois. We show that such ideals 

behave analogously to the usual notion of H-stable ideals when there is actually 

an H-action. The basic tool here is the Morita equivalence between R and ACpH*, 
where the H*-action on A is the dual of the given H-coaction. 

In Section 2 we apply the Morita equivalence to H-primes of R and H*-primes 

of A, and get a bijective correspondence between H-equivalent primes of R and 

H*-equivalent primes of A 

Spec (A) /~H-  -> Spec(R)/ ~ H .  

As a special case (Corollary 2.6), we show that if also H* is pointed and R C A is a 

centralizing extension, then there is a bijection between Spec(R) and the orbits of 

Spec(A) under the action of the character group of H. The corollary is applied to 

the central extension F0[G] C Oe[G] of the quantum coordinate algebra over the 

usual coordinate algebra, where G is the connected, simply connected, semisimple 

algebraic group corresponding to a finite-dimensional semisimple complex Lie 

algebra g and e is a primit ive/- th root of unity, l odd and prime to 3 in case 1~ 

has a G2 component. In Corollary 2.8 we show that F0[G] C O~[G] is faithfully 

flat H-Galois, where H is the quotient Hopf algebra, by general Hopf algebra 

arguments (in particular Oe[G] is projective over F0[G], a fact which was shown 

in [DL] in a completely different way), and we derive a bijection 

Spec(O~[al)/x -~ Spec(Fo[a]), 

where X is the character group of H. The prime correspondence in this case was 

shown independently by E. Letzter [L2] by different methods. 

In Section 3 we show that  H-Spec(R) can be identified with H0-Spec(R), where 

H0 is the coradical of H. This generalizes work of Chin [Ch90] for the case when 

H is pointed, that  is H0 = kG. For this we must introduce C-stable ideals and 

C-primes for a subcoalgebra C of H. 

In Section 4, we define versions of the Krull relations such as going up (GU), in- 

comparability (INC), and lying over, though we replace the usual lying over prop- 

erty with a related property called t-lying over (t-LO). We also define the "duals" 

of these three relations, which we call co-going up (co-GU), co-incomparability 

(co-INC), and t-colying over (t-coLO); we say that H has a given Krull relation 

if the relation holds for all faithfully fiat H-Galois extensions R C A. We then 
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prove tha t  the dual relations are indeed dual, in the sense that  H will have a 

given relation if and only if H* has the dual relation. We also show tha t  to see if 

H has a given relation, it suffices to check it for R C A in the special case when 

A = R # H  and R is H-prime.  

In fact the H-Galois  assumption can be weakened for some of our results; this is 

the topic of Section 5. We consider there H-module  algebras A with invariant ring 

R = A H such that  the trace map t : A --+ R is surjective (in coaction language, 

this is equivalent to R C A being an H*-extension with a total integral). Our 

assumption implies that  there exists an idempotent 0 ~- e = e 2 c A=/CH such 

that  e ( A # H ) e  TM A H. Using this fact and some techniques from work on group 

actions, we are able to prove fairly general results on the Krull relations for R C A 

(Theorem 5.5). As a consequence we are able to define an equivalence relation 

on Spec(R) and prove analogs of the correspondence discussed in Section 2. This 

generalizes work of [M81] for group actions. 

In Section 6 we prove some very general transitivity results for the Krull rela- 

tions. Tha t  is, if K is a normal sub Hopf algebra of H with quotient Hopf algebra 

/~, when do the Krull relations for K a n d / ~  imply those for H?  In fact we prove 

more general versions of transitivity, for arbitrary ring extensions with a "lying 

over relation". This enables us to enlarge our base field (in Section 7) as well 

as to look at Hopf Galois extensions. We note that  the difficulties in Section 7 

involve reflecting the various Krull relations from H ® E back to H,  where k C E 

is a field extension. 

Finally, in Section 8 we obtain consequences of the work of the previous sec- 

tions. We first prove a few facts about quotients of Hopf algebras (Lemma 8.2) 

to enable us to apply our transitivity results to Hopf algebras with various nor- 

mal series; recall that  a Hopf algebra is ( co ) so lvab le  if it has a normal series 

in which all of the quotients are (co)commutative. We prove (Theorem 8.4) tha t  

when t = d i m H  and H is cosolvable (resp. solvable), then H has t-coLO (resp. t- 

LO) and GU (resp. coGU). If H is both solvable and cosolvable, for example if H 

is the restricted universal enveloping algebra of a solvable restricted Lie algebra, 

then H has all six Krull relations. We note that  it is an open question whether 

any finite-dimensional cocommutative Hopf algebra has all the Krull relations. 

I t  might even be true that  any finite-dimensional Hopf algebra has all the Krull 

relations. 

When H is semisimple, more can be shown. We say that  H is s e m i s o l v a b l e  if 

H has a normal series in which the quotients are either commutat ive or cocom- 

mutative.  If H is semisimple and semisolvable, then we prove that  it has 1-LO, 
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t-coLO, GU, coGU, INC, and coINC (Theorem 8.5). In particular, let R be 

any H-module algebra and A := R # H  where H is semisimple and semisolvable. 

Then we get from Theorem 8.5: 

1. If R is H-prime, then A has at most n < dim H minimal primes, call 

them P 1 . . . ,  Pn; rl i~l Pi = {0}; and P E Spec(A) is a minimal prime if 

and only if P V~ R = {0} (since H has 1-LO and INC). 

2. If R is H-semiprime, then R # H  is semiprime (since H has 1-LO). 

In fact H is known to be semisolvable in many cases; for example, when k is 

algebraically closed of characteristic 0, dim H is a power of a prime and H 

is semisimple, then H has a normal series in which all the quotients are both 

commutative and cocommutative. 

1. H - s t a b l e  ideals  o f  R 

Throughout  this section, R C A denotes a faithfully flat right H-Galois extension. 

We introduce here the notion of an H-stable ideal of R; in the special case when R 

is an H-module algebra and A = RC/:H, it becomes the usual notion of H-stable 

ideal. 

We first recall a general result (see for example [S1]); for R C A as above, and 

assuming H has a bijective antipode, there exist category equivalences as follows: 

(i) M R  ~ M H, given by M ~ M ® R A  TM M A  and N ~ N c°H, for M E M R  

and N E M H ;  

(ii) RM ~--~A M H, given by M ~-+ A ®R M ~- A M  and N ~-~ N c°H, for 

M E RA/~ and N E A J ~  H , 

where M H and A M  H are the categories of (A, H)-Hopf modules taken on the 

appropriate sides. 

Definition 1.1: (1) An ideal I of R is called H- s t ab l e  if I A  = AI .  

(2) For any ideal I of R, (I  : H) denotes the largest H-stable ideal of R 

contained in I. 

Note that  (I  : H)  exists since a sum of H-stable ideals is again H-stable. 

Remark  1.2: (i) The definition of H-stable above is a natural one. For when 

A = R # , H ,  it is shown in [MS, 1.3] that  if an ideal I of R is H-stable in the 

usual sense (that is , H • I C I) and the antipode of H is bijective, then I is 

H-stable in the sense of Definition 1.1. We note that  it is false in general that  

I H  = H I  for any H-stable ideal I [MS, 2.6]. (ii) When a is trivial, that  is A is a 
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smash product, then I is stable in the usual sense provided A I  C IA.  In fact this 

seemingly weaker property is equivalent to A I  = IA,  even in the general GMois 

situation: for, assume that A I  C I A  and let M = IA.  Then M E AJ~ H, and so 
the category equivalence (ii) implies (IA) N R = I and I A  = A ( I A  n R) = AI .  

The category equivalences have immediate consequences for ideals of A and R. 

For any subspace J of A, let J denote the largest H-subcomodule of A contained 

in J. 

LEMMA 1.3: Consider A CA j~H and A E .M H. 

(1) I f  J is any ideal of A, then 07 N R = J n R is an H-stable ideal of  R. 

Moreover, (J  N R ) A  = A ( J  N R) = ].  

(2) I f  I is any idea/of  R, then (IA) N R = (d I )  N R = 1. 

(3) I f  I and I '  are ideals of R, then ( IOI ' )A  = I A N I ' A  and A ( INI ' )  = A I N A I ' .  

Consequently (1: H) N (1':  H) = ((I n I ') : n ) .  

(4) There is a bijection of sets 

{H-stable ideals of  R}  ~ {ideals of  A which are H-subcomodules} 

given by q?: I ~ I A  = AI ,  I an H-stable ideM of R, and gg: J ~ J n R, 

J an ideal of  A and an H-subcomodule. These bijections preserve sums, 

intersections, and products. 

Proof'. (1) Clearly 07N R C J N R. Conversely, consider J1 = A ( J  N R)A; it is 
an ideal of A contained in J which is an H-subcomodule, and so J1 C 07. Thus 

J A R  C Z and so J N R  = 07NR. Now 07 EA, t~ ,  and so 07- - (07NR)A = ( J N R ) A  

by the category equivalence (i); similarly J =  A ( J  n R) using (ii). 
(2) Since I A  C .h,I H and A I  C AAd H, (2) is clear from (i) and (ii). 

(3) The first statement follows from the fact that (i) and (ii) preserve 

intersections, and the second follows from the first. 

(4) Given I <1 R which is H-stable, let J = A I  = IA; clearly 07 = J ,  and 

J N R - - - I b y  (2); t h u s ~ o e b = i d .  G i v e n J = J < l A ,  l e t I = J n R ; t h e n I i s  

H-stable and J = I A  by (1). Thus (b o ~ = id. • preserves intersections by (3), 

and • preserves them, since ~ is surjective. Similarly for sums and products: if 

I and I '  are H-stable, then 

(I  + I ' )A  = I A  + I ' A  = A I  + AI '  = A( I  + I ') ,  

and 

( I I ' ) A  = I A I I A  = I A I '  = A I F .  



Vol. 112, 1999 PRIME IDEALS IN HOPF GALOIS EXTENSIONS 193 

Thus I + I '  and I F  are H-stable, and • preserves sums and products. Since ~P 

is a bijection, it follows that • also preserves sums and products. | 

Now assume in addition that H is finite-dimensional . Then the coaction 

of H on A dualizes to give an action of H* on A, in which H-subcomodules 

correspond to H*-submodules. In particular J = (J  : H*), and Lemma 1.3(4) 

gives a correspondence between H-stable ideals of R and H*-stable ideals of A. 

This correspondence can be strengthened by using the smash product A ~ H * .  

Since R c A is H-Galois, it follows by [KT] that A~CH* ~- End(AR). Thus the 

bimodule M = A#H* AR gives a Morita equivalence. The next theorem extends 

[MS, Theorem 7.2], where the analogous result was shown when A was a crossed 

product. 

THEOREM 1.4: The Morita equivalence between R and AC~H* via M as above 

defines a bijection ¢ from ideals of R to ideals of A~CH*, preserving containments, 

intersections, and products, such that i f  

¢: I ~+ I '  

for I an ideal of R and F an ideal of A~CH*, then 

( I :  H) ~-~ (I '  N A ) # H *  = (I : H)A~CH*. 

Consequently (I : H ) A  = I '  A A and (I : H) = I '  N R. 

Proof: (a) The Morita equivalence gives a bijection between ideals I of R and 

(AC~H*, R)-subbimodules of A which maps I to AI .  Similarly, there is a bijection 

between ideals J of A # H *  and ( A # H * ,  R)-subbimodules of A which maps J to 

J . A .  Hence there is a bijection ¢ between ideals of R and of A ~ H *  in which I 

corresponds to I ~ if and only if A I  = I '  • A. 

(b) Next we show that under ¢, H-stable ideals of R correspond to ideals of 

A~CH* which are H*-subcomodules. Let I be an H-stable ideal of R. Then 

( I A # H * )  . A = ( I A ) A  = I A  = A I  

since I is H-stable. Thus I '  = ¢(I)  = I A # H * ,  clearly an H*-subcomodule. 

Conversely, assume F <1 A~CH* and F is an H*-subcomodule. Applying the 

correspondence (ii) to the H*-Galois extension A C A # H * ,  we see I '  = 

(I '  n A ) # H * .  Now I t N A is an H*-stable ideal of A, so an H-subcomodule, 

and thus by Lemma 1.3(1), 

I '  n A -= ((I'  n A) n R ) A  = (I'  n R)A.  
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Hence 

I ' .  A = ((I' N R ) A # H * ) -  A = (I' N R ) A  = A(I '  N R), 

where the last equality holds since F N R  is H-stable,  by Lemma 1.3(1). Therefore 

by definition of the bijection ¢ in (a), I = ~b-l(I ') = I' N R is H- s t ab l e .  

(c) By (b), the largest H-stable ideal ( I  : H)  in an ideal I of R corresponds 

to the largest ideal in 1 / which is an H*-subcomodule, that  is, to (F n A)~H*.  

Finally, applying (b) to ( I  : H),  we see that  ¢ maps ( I  : H)  to ( I  : H ) A ~ H * .  

Thus I '  N A  = ( I :  H)A, and also I '  N R = ( ( I :  H)A) N R  = ( I :  H)  by Lemma 

1.3(2). I 

The next corollary will be useful in constructing prime and semiprime ideals 

of R. 

COROLLARY 1.5: Let L be an H-stable ideal of R and choose x C L. Then there 

exists a finitely generated H-stable ideal I of R such that x E I C L. 

Proof: We first claim that  for any ideals J C E of A#H*,  such tha t  ,7" is finitely 

generated and £ is an H*-subcomodule, there exists an ideal J of A~H*,  with 

J C J C/2,  such that  J is both finitely generated and an H*-subcomodule.  

Assume J ~ where we = ~i=1 SxiS,  let S = A#H*.  Then there exists a finite- 

dimensional H*-subcomodule V of £ such that  all xi C V (by the local finiteness 

of comodules). Setting J := S V S  proves the claim. 

We now apply the Morita correspondence in Theorem 1.4. Let J -- RxR; 

then J C L is a finitely generated ideal of R, and consequently J = ¢(RxR)  

is a finitely generated ideal of S. Moreover /7 C £ :-- ¢(L), and by Theorem 

1.4 we have £ is an H*-subcomodule since L is H-stable  . Thus there exists ,7 

as above, /7 C J C £, with ,.7 a finitely generated ideal and H*-subcomodule.  

Thus by Theorem 1.4, I :-- ¢-:(LT) is finitely generated and H-stable  ; moreover 

x E R x R - -  J C I ,  and I C L = ¢ - : ( £ ) .  I 

We close this section with a consideration of what happens to our set-up mod- 

ulo H-stable  ideals. Thus choose an H-stable ideal I of R and set /Z := R / I .  

Since I A  = A I  is an ideal of A, we may define J := A/ IA;  since I A  n R = I by 

Lemma 1.3(2), it follows that  R can be canonically embedded into A. 

LEMMA 1.6: Let I,  [~, and Zt be as above. Then under the induced H-comodule 

structure on A, [~ C A is a faithfully fiat right H-Galois extension. 

Proof." Note that  A is indeed an H-comodule since IA  is an H-subcomodule of 

A; it is clear t h a t / ~  C jcoH.  
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Moreover/~ ®R A = R / I  ®R A -~ A l I A  ~ A. Now for any r ight /~-module M,  

M ®R fi = M ®R (/~ ®R A) ~ M ®R A. Thus ~fi  is faithfully flat since RA is 

faithfully fiat. 

Since R c A is H-Galois,  the Galois map A ®R A -+ A ® H,  given by x ® y ~-+ 

~, xyo @ Yl, is a bijection. Thus 

R ® R A ® R A  ~-> R ® R A ® H .  

By the remark above, this gives 

fI ®?t ft ~-> fi ®~t R ®R A ~-> fi ®R A ~-> fi ® H, 

via the induced map ~? ® ~ ~,. ~] ~ ® Yl- Now consider the diagram 

/1 
c ~ ::::¢ A®~f i  

/2 

ficoH C A -> fi ® H ___+ 

The top row is exact since RA is faithfully fiat , and the bo t tom row is exact 

by the definition of ficog. Since the diagram commutes and we have shown that  

the vertical arrow is an isomorphism, we must have /~  = fi¢og. Thus /~ C fi is 

H-Galois.  | 

Remark 1.7: (1) If Q <1 R is H-stable , then its image Q is H-stable  in /~, 

since 0 A  = QA = AQ = fiQ. Conversely, if J <1/~ is H-s table  and Q is the 

inverse image of J in R, then also Q is H-stable . For, Qfi~ = AQ implies 

QA c AQ + AI  = AQ; similarly AQ c QA. 

(2) In the special case when A = R # H  and R is an H-module  algebra, Lemma 

1.6 has an easy proof. For then IA  = I¢/=H, and thus A = R # H / I @ H  -~ 
R/I~pH = RC/=H, and clearly/~ C / ~ # H  is H-Galois. 

2. H-prime ideals and e q u i v a l e n c e  r e l a t i o n s  o n  Spec 

In this section ~ve extend the usual notion of H-pr ime ideals to our set-up of a 

faithfully f iat /- /-Galois  extension R C A and consider correspondences between 

Spec(R) and Spec(A). We also assume that  H is finite-dimensional, so tha t  there 

is an H*-act ion on A. 
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Definition 2.1: An H-stable ideal  I of R is H - p r i m e  if I ¢ R and whenever 

L M  C I, for H-stable ideals L, M of R, then L C I or M C I. R itself is an 

H-prime ring if R ~ {0} and if {0} is an H-prime ideal of R. The set of all 

H-prime ideals of R will be denoted by H-Spec(R). 

To avoid confusion, we will usually write Q E Spec(R) and P E Spec(A). 

LEMMA 2.2: 

(1) The bijections in Lemma 1.3(4) restrict to give bijections 

(p 

H-Spec(R) ( ~ H*-Spec(A), 
~p 

where as before (b: I ~-+ IA  and ~: J ~-~ J M R. 

(2) The map f :  Spec(R) -+ H-Spec(R) given by Q ~-+ (Q : H) is well-defined 

and surjective. 

(3) The map g: Spec(A) -~ H-Spec(R) given by P ~ P ~ R  is well-defined and 

surjectiye. 

Proof." (1) We only need to show that  Im(~) and Im(~)  are in the correct subsets. 

I f / E  H-Spec(R),  let J = (I)(I); J is H*-stable by Lemma 1.3(4). If U, V are H*- 

stable ideals of A with UV C J,  then ko(U)ko(V) C ~(J)  -- I since kO preserves 

products. Since I is H-prime , and q~(U), ko(V) are H-stable by 1.3(4), either 

• (U) C I or ~(V) C I. But then U C J or V C J,  and so J is H*-prime. 

The converse is similar, using that (I) preserves products and sends H-stable 

ideals to H*-stable ideals. 

(2) It is easy to see that (Q : H) is H-prime , for if L M  C (Q : H), for 

H-stable ideals L , M  of R, then L M  C Q and so L c Q or M C Q. But then 

L C (Q : H) or M C (Q : H).  To see that f is surjective requires some work. 

Thus, let I E H-Spec(R). 

We consider the set Z = {J<~ R I ( J  : H) = I}. Z ¢ 0 since I E Z. We 

claim that  Z is closed under ascending chains. Let Ji, i in some index set, be an 

ascending chain in Z and let J be their union. Since (Ji : H)  -- I for all i, clearly 

I C (J  : H).  Conversely, choose x E (J  : H).  By Corollary 1.5 with L = (J  : H),  

there exists a finitely generated H-stable ideal M of R with x E M C ( J  : H).  

Since M C J and M is finitely generated , M C Ji for some i. But then 

M C  (Ji : H )  = I ,  a n d s o x E I .  Thus ( J : H )  = I a n d  J E Z .  We may now 

apply Zorn's lemma and choose a maximal element Q E Z. 

We claim that  Q is a prime ideal of R. For if L, M are ideals of R with 

L M  C Q, we may assume L, M D Q. By the maximality of Q, (L : H) D I and 
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(M : H) ~ I. However (L : H ) ( M  : H) C (Q : H) = I, since the product of 

H-stable ideals is H-stable ; this contradicts I E H-Spec(R). Thus Q is prime. 

(3) We give a direct argument to see that g is well-defined. For if P C Spec(A) 

and L M  C P N R, where L, M are H-stable ideals of R, then ( L A ) ( M A )  = 

L M A  C P; since P is prime and LA, M A  <1 A, either LA C P or M A C  P. But 

then L C P N  R or M C P N  R, so P n R is H-pr ime.  

To see that  g is surjective, choose I E H-Spec(R), and let 

Z =  {5<1 A I J A R =  I}.  

5[ ~ 0 since I A  C 5[, and Z is closed under ascending unions, so we may choose 

P maximal in Z. We claim that P is prime. If L M  C P, for L, M <1 A with 

L , M  ~ P,  then ( L N R ) ( M N R )  C P A R  = I. Since L O R  and M A R  are 

H-s tab le ,  either L N R C I or M N R C I. But then L, M ~ P implies L N R = I 

or M n R = I, a contradiction to the maximality of P (note this argument did 

not require H to be finite-dimensional ). | 

We next set up a bijection between certain equivalence classes of primes of R 

and of A. 

Detlnition 2.3: (1) P ~ Spec(A) lies over  Q c Spec(R) if P N R = (Q:  H).  

(2) For Q1, Q2 E Spec(R), define Q1 r'~H Q2 ~ (Q1 : H) = (Q2: H). 

(3) For P1, P2 C Spec(A), define P1 ~H* P2 ¢=~ (P1 : H*) = (P2: H*). 

We remark that for an arbitrary ring extension R c A, to say that  P lies over 

Q would usually mean that Q is minimal over P A R .  We will discuss in Corollary 

4.7 when our condition is equivalent to this one. 

COROLLARY 2.4: Let t~ C A be faithfully fiat H-Galois, where H is finite- 

dimensional. Then ~H and ~H* are equivalence relations, and there is a bijection 

S p e c ( R ) / ~ H  ~ Spec (A ) /~g *  

where for Q E Spec(R) and P E Spec(m), ~: [Q] ,-+ [P] i f  and only i f  P lies over 
Q. 

Proo~ Clearly r-, H and ~H* are equivalence relations. Moreover, Lemma 2.2(2) 

induces bijections 

f :  Spec(R)/~H--~ H-Spec(R), via [Q] ~-~ (Q:  H) 

and 

~: S p e c ( A ) / ~ H * ~  H*-Spec(A), via IF] ~ ( P :  H*). 
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By 2.2(1), (I): H-Spec(R) --+ H*-Spec(A) is also a bijection. Thus ~ := ~-1 o(I)o f 

is a bijection between the desired quotient sets. Now 

~([Q]) = iF] ~ ~-([Q]) = if)-1 o ~[P] = ~ o ~[P] 
| 

¢=~ (Q:  H) = ko((p: H*)) = P N R .  

We wish to refine this correspondence on Spec. As we will see in Section 3, it 

is only necessary to consider stability of primes under the coradical of H.  As a 

first step, we recall a result of Chin for pointed Hopf algebras [Ch90]; part (1) of 

the lemma is [Ch90, Lemma 2.2(i)] and part (2) is implicit in [Ch90, 2.2(ii)]. We 

give the proof, as it is very short. 

LEMMA 2.5 (Chin): Let  H be a finite-dimensional pointed Hop f  algebra and A 

an H - m o d u l e  algebra. Let  G = G ( H )  denote the set of  group-like elements in H.  

(1) For any ideal P o f  A, 

x .  P C (P  : H)  
EG 

for some  m <<_ dim H. 

(2) For any P1, P2 E Spec(A), (P1 : H) = (P2 : H) ~ P2 = x .  P1, for some 

x E G. Thus  

S p e c ( A ) / ~ H  = Spec (A) /G ,  

where S p e c ( A ) / G  is the set of G-orbits in Spec(A). 

Proof: (1) Note that  J = NxeG x .  P is the largest G-stable ideal of A in P.  Let 

H0 C H1 C -.. C Hm = H denote the coradical filtration of H; H0 = k G  since H 

is pointed. We claim that for all j >> O, Hj  • j n  C J for any n > j .  This is clear 

for j = 0. Assuming it is true for all i < j ,  and n > j ,  then 

J 
Hj  . (J~) = H i .  ( J .  J ~ - ' )  C ~-~(Hi . J ) ( H j - i  . j ~ - l )  C J. 

i=0 

Thus H .  j ,~+l  = Hm • j m + l  C J. It follows that jm+l  C (J  : H)  C (P  : H).  

(2) Clearly P2 = x. PI implies (P1 : H) = (P2 : H).  So assume that  (P1 : H)  -- 

(P2: H).  By (1), 

( N  x ' P 1 ) ' ~  C (PI :  H) = ( P 2 :  H) C P2. 
xEG 

It follows that  y .  P1 C P2 for some y E G. Similarly z .  P2 C P1 for some z c G. 

Then yz  • P2 C y .  P1 C P~; since G is finite, yz  • P2 = Y • P1 -= P2. This proves 

(2). i 
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COROLLARY 2.6: Let R C A be a faithfully flat H-Galois extension, with H 

finite-dimensional, such that H* is pointed and A is a centralizing extension of 

R. If G = G(H*), then there is a bijection 

Spec(A)/G ~ Spec(R), [P] ~-~ P A R. 

Proof." First, since A is a centralizing extension of R, all ideals of R are H-  

stable, and thus H-Spec(R) = Spec(R). Equivalently, Spec(R)/  ~H = Spec(R). 

By Lemma 2.5, Spec(A)/ ~H.= Spec(A)/G. The corollary now follows from 

Corollary 2.4. I 

The previous corollary has interesting applications to Hopf algebras A with a 

central sub Hopf algebra R of finite index. If A is faithfully flat over R, then 

R C A is faithfully flat H-Galois, H := A/AR +, with coaction A --* A ® H,  

a ~-~ ~ a 1 ® a2 ,  by [T, Th. 1] and [$4, 1.6]. A is always faithfully flat over R in 

case R is noetherian by [$4, Th. 3.3]. The next lemma describes another class of 

examples using duality. 

LEMMA 2.7: Let U be a pointed Hopf algebra, I C U a Hopf ideal and K := 

U c°u/~. Assume K is finite-dimensional and I is cocentral in U, that is for all 

x E U ,  

E ( x l  ® x2 - x 2  ® xl) e I ® I .  

Let R be the image of (U/I) ° in U ° under the Hopf algebra map dual to the 

canonical map U ~ U/I. Let A C U ° be any sub Hopf algebra containing R. 

Then R C A is a central sub Hopf algebra, the quotient Hopf algebra H := 

A / A R  + is finite-dimensionM and H* is pointed, A is a finitely generated pro- 

jective R-module and R is an R-direct summand in A. In particular, R C A is 
faithfully flat H-GMois. 

Proof." (1) To see that  R is central in U °, let f C U °, g E R and x E U, and let 

U ~ U/I, x ~ ~2, be the quotient map. Then 

(gf)(x) = E g(21)f(x2) = E f(x2)g(2t) = E f(xl)g(~2) = (fg)(x), 

since I is cocentral, hence ~ Xl N 22 = ~ x2 ® ~1. 

Let ¢: U ° -~ K ° be the restriction map. We want to show that the kernel of ¢ 

is a conormal Hopf ideal of U °. Since I is cocentral hence conormal in U, K is a 

normal sub Hopf algebra of U [$4, 1.3]. Let f e U ° with ¢ ( f )  = f IK= 0. Then 

for all x C U and y E K, ~ XlyS(x2) E K by normality, hence 

E f '  (x,)(Sf3)(x2)f2 (y) = f ( E  xlyS(x2)) - =  O. 
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Thus ~ f l (Sf3)®f2 E U°®Ker(¢), and similarly ~ f 2 ® ( S f l ) f 3  E Ker(¢)®U °. 
Hence Ker(¢) is conormal. 

We finally show that R is the Hopf kernel of ¢, that is R = (U°) c°K°. By 

definition, (U°) c°g° is the set of all f E U ° with ~ f l  ® ¢(f2) = f ® 1, i.e. 

~f l ( x ) f2 (Y )  = f(x)e(y) or f(xy) = f(xe(y)) for all x e V and y E K; equiv- 

alently f ( U K  +) = {0}. But I = UK + since U is pointed [Ma91, Th. 1.3] and 

hence R = (U°) c°K° since f E R if and only if f ( I )  = {0}. 

(2) By Part (1) of the proof, R is a central sub Hopf algebra of A C U °, the 

kernel J of the restriction map A -+ K ° is conorrnal and R = A ~°A/J. By assump- 

tion, K is finite-dimensional and pointed. Then H := A / J  is a finite-dimensional 

sub Hopf algebra of K ° = K* and its dual is a quotient of K,  hence pointed. 
Note that  the quotient map induces the natural Galois map A ®R A --+ A ® A/J ,  
which is surjective. Since A / J  is finite-dimensional and R is commutative, it 

follows from [KT] that R C A is A/J-Galois, A is finitely generated projective 

as an R-module and R is an R-direct summand in A. Moreover, A is left and 

right faithfully coflat over A / J  by [$4, 2.1(1)], hence J -- AR + by IT, Theorem 

21. = 

As a special case of the preceding lemma we now consider the Frobenius- 

Lusztig kernels. Let g be a finite-dimensional semisimple complex Lie algebra, l 

an odd integer (prime to 3 in case g has a G2 component) and e a primitive/-th 

root of i in C. Let U~(g) be Lusztig's quantum enveloping algebra over Q(¢) de- 
fined by extending scalars via Z[v, v -1] ~ Q(e), v ~-~ e, v an indeterminate, from 

Lusztig's form [Lu, 1.3]. We want to apply 2.7 to the Frobenius homomorphism 

Fr : Ue(g) -+ U(g) of [Lu, 8.10]. Here, U(g) is the usual enveloping algebra of 

g over Q(e). Fr is a surjective Hopf algebra homomorphism of pointed Hopf 

algebras. Consider the dual Hopf algebra map Fr o : U(g) ° ~ Ue(g) °. Let F0[G] 

be the image of Fr °. Then F0[G] ~ U(g) ° is the usual coordinate algebra of 

the connected, simply connected, semisimple algebraic group G with Lie algebra 

g. The quantum coordinate algebra Os[G] is a sub gopf  algebra of U~(g) ° con- 

taining F0 [G] defined by a certain class of finite-dimensional representations [Lu, 

8.17], [A, 3.4.5], [DL, 6.4,4.1]. 

COROLLARY 2.8: F0[G] C Oe[G] is a central sub Hopf algebra , O¢[G] is finitely 
generated and projective over Fo [G], F0 [G] is an Fo [G]-direct summand in O¢ [G], 

and H := O~[G]/O¢[G]Fo[G] + is finite-dimensional such that H* is pointed. In 
particular, F0[G] C Oe [G] is faithfully fiat H-Galois, and 

Spec(Oe[G])/X ~-~ Spec(F0[G]), [P] F-~ P n Fo[G], 
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where X :---- Alg(H, Q(s)) is the character group of H. 

Proof.- Let I be the kernel of the Frobenius homomorphism and 

U := U~(9). It  is easy to see that  I is a cocentral Hopf ideal in U by checking 

the generators of U as in [DL, 6.4]. The Frobenius-Lusztig kernel u is the finite- 

dimensional sub Hopf algebra of U defined in [Lu, 8.2]. Then I = u+Uu + by 

[Lu, 8.16]. It  is shown in [A, 3.4.2] that  u is a normal sub Hopf algebra of U. 

Hence u = U ¢°U/I [A, 3.4.1]. Now all the assumptions of 2.7 are verified. Thus 

the corollary follows from 2.7 and 2.6 with R := F0[G] and A := O¢[G]. | 

In [DL, 7.2], projectivity of the F0[G]-module O~[G] was shown in a way com- 

pletely different from the above general Hopf algebra arguments. Concerning 

the prime ideal correspondence in 2.8, a very similar result for G -- SL(n) was 

shown in ILl] by direct calculations using generators and relations for the quan- 

tum coordinate algebra of SL(n). In [DP, 4.10], the correspondence is shown for 

1 prime to the bad primes of the root system; the proof involves an analysis of 

certain Azumaya algebras. Finally in [L2] a different proof of the corespondence 

for general G is given using results from Noetherian ring theory. 

3. R e d u c i n g  to  t h e  c o r a d i c a l  

In this section we prove a greatly generalized version of Chin's result, Lemma 2.5, 

in a different way. We show that  H-Spec(R) can be identified with H0-Spec(R), 

where R C A is a faithfully fiat H-Galois extension and H0 is the coradical of H;  

in general H0 is not a sub Hopf algebra. To this end we first define C-stable 

ideals and C-prime ideals for subcoalgebras C of H.  

As above let R C A be a faithfully flat H-Galois extension and let H be 

finite-dimensional.  

Definition 3.1: Let C C H be a subcoalgebra. Define A(C) := p - l ( A  ® C), an 

R-subbimodule of A. An ideal I in R is called C - s t a b l e  if IA(C) = A(C)I.  Let 

( I  : C) denote the largest C-stable ideal in R which is contained in I .  A C-stable 

ideal I in R, I ~ R, is called C - p r i m e  , if whenever KL C I for K, L C-stable 

ideals of R, then K C I or L C I .  C-Spec(R) is the set of all C-prime ideals 

in R. 

Remark 3.2: (1) Let R be an H-module  algebra, A = R # H  the smash product 

and C C H a subcoalgebra. Then A(C) = R#C.  Any C-stable ideal I in R is 

stable under the action of C, i . e . c ,  r E I for all c E C and r E I .  Conversely, if 

S(C) -- C, any ideal in R which is stable under the action of C is also C-stable. 

This follows from the identity r#c  = ~(1#c2) (S -1 (c l ) .  r) in R~C.  
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(2) Let H0 be the coradical of H and I an ideal in R. Then I is H0-stable iff 

I is C-stable for all simple subcoalgebras C of H. 

Proo#: Let (Ci) ie j  be the set of all simple subcoalgebras of H.  Then /t0 = 

~ i e J  C~. Hence A(C) = ~ i  A(Ci) is a decomposition into R-bimodules. Thus 

IA(C)  = A(C)I  iff IA(C~) = A(Ci)I  for all i. | 

In the sequel we will need the cotensor product V[~cW of a right C-comodule 

V and a left C-comodule W over any coalgebra C. Recall that  V O c W  is the 

equalizer of the maps Av  N id and id @ A w  from V @ W to V ® C ® W. Note 

that  A induces an isomorphism C ~'> HRHC. Similarly, in 3.1, p induces an 

isomorphism A(C) ~-> AE]HC. 

LEMMA 3.3: Let C C H be a sub coMgebra and I an ideal in R. 

(1) If I is H-stable then I is C-stable. 

(2) ((X: C ) :  H)  = ( I :  H).  

Proof: (1) The Galois map A @R A - ~  A @ H, x ® y ~ ~ xyo ® yl, is right H-  

colinear where the H-comodule structures are id @ p and id ® A. By cotensoring 

with OHC we get an isomorphism of R-bimodules A ®n A(C) ~- ~ A @ C. Here, 

A @R A(C) is an R-bimodule by left multiplication on A and right multiplication 

on A(C),  and A @ C is an R-bimodule via the bimodule structure of A. Note 

tha t  we used the bijectivity of the natural map 

A @R (AOHC) - ~  (A ®n A)[JHC 

which holds since A is right R-fiat. 

Since I is H-s table  we have AI  = IA  and hence (A®RA(C))I  = I(A®RA(C)).  

We want to conclude that  A(C)I  = IA(C). For any R-submodule M of A let 

~ ( A ® R M )  denote the image of A ® R M  in A®RA defined by the inclusion map.  

This notation is also used for submodules of A ®R M. Then ~(I (A  ®R A(C))) = 

~(A  ®R IA(C))  and ~((A ®~ A(C))I)  = ~(A ®n A(C)I).  

From (A ®R A(C)) I  = I (A  ®R A(C)) we get ~(A ®R X)  = ~(A'QR Y),  where 

X := IA(C)  and Y := A(C)I.  Since A is right faithfully flat over R we conclude 

tha t  X = Y, and I is C-s tab le .  

To see tha t  ~ (A@RX) = ~ ( A ® n Y )  implies X = Y for all R-submodules X,  Y 

of A we can assume that  X C Y (replace Y by X + Y). Then A ®R X -+ A ®R Y 

is surjective, hence X = Y by faithful flatness. 

(2) Since ( I  : C) is an ideal in I ,  ( ( I  : C) : H)  is contained in ( I  : H) .  To 

prove the other containment let L C I be an H-stable  ideal of R. By (1), L 
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is C-stable . Hence L C (I : C) and L = (L : H) C ((I : C) : H). Thus 

( I : H )  C ( ( I : C ) : H ) .  | 

COROLLARY 3.4: Let C C H be a sub coalgebra. Then 

f :  C-Spec(R) ~ H-Spec(R), f ( I )  := ( I :  H), 

is we11-detined and a surjection. 

Proof: To see that  f is well-defined let I c C-Spec(R) and let K, L be H-stable 

ideals in R such that KL C (I : H). Then KL C I, and K , L  are C-stable 

by 3.3(1). Hence K C I or L C I. Since K and L are H-stable , this implies 

K C ( I : H )  o r L C  ( I : U ) .  

To prove the surjectivity of f ,  let I E H-Spec(R). By 2.2(2) there is a prime 

P E Spec(R) such that  (P : H) = I. By 3.3(2), (P : H) = ((P : C) : U), and 

( P :  C) C C-Spec(R) by the proof of 2.2(2). Thus I = f ( ( P :  C)). | 

Now let H0 C H1 C -.. be the coradical filtration of H (cf. [M, 5.2]), and define 
A~ := A(H~) for n _> 0. Then A0 C A1 C --- is a filtration of R-subbimodules 

in A. Note that  H~ C Hn+I are subcoalgebras of H, in particular left (and 

right) sub H-comodules. Then the quotient H-comodule Hn+l/Hn is in fact an 

H0-comodule since A(Hn+I) C ~i+j=n+l Hi ® Hi (cf. [M, 5.2.2]). 
The next lemma contains the crucial observation (cf. [$2, 1.4, 2.1] for the case 

when H is pointed). 

LEMMA 3.5: For all n > O, the map 

¢: An+l/An --+ AOC3Ho(H~+I/H~), ¢(2) := ~--~x0 N~l ,  

is an isomorphism of R-bimodules. Here, the cotensor product is an R-bimodule 

via the bimodute structure of Ao. 

Proof: Let fi~+l := A,~+I/A~ and /4n+1 := Hn+l/Hn. Consider the following 
diagram 

An-i-1 i it®id A ®R 2~n+l / A ®R A ®R An+l 
i2®id 

A[:]HHn+I C A ®/t~+1 id®~ A ® H ®/t,~+1 
AA~id 

where i(a) : - - ' l ® a ,  il(x) := x @ l ,  i2(x) :-- l @ x ,  ¢1(x @ a) := ~xao®~t l ,  

¢2(x ® y ® 5) := ~-~xyoao ® ylal @ 52 for all a E An+l and x ,y  E A, and /~ 
denotes the H-comodule structure map of Hn+I. 
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Then i is injective and its image is the kernel of il ® id - i2 ® id, since A is 

faithfully flat over R. Also, the bot tom sequence is exact by the definition of 

the cotensor product. It  is easy to see that  the diagram commutes. To show the 

bijectivity of ¢ it therefore suffices to show that  ¢1 and ¢2 are bijective. We have 

seen in the proof of 3.3 that  the Galois isomorphism induces isomorphisms 

A ®R An ~- ~ A ® Hn and A ®R An+l ~ A ® H~+I 

(take C -- Hn and Ha+l) .  Since A is right R-flat we see that  the induced map 

A ®R An+l --+ A ®/~n+l  on the quotients, which is ¢1, is bijective. 

The map  ¢2 is bijective since it is the composition of the following isomor- 

phisms: 

A Q R A Q R A n + I ~ ( A Q H )  ® R A n + I ~ A Q H ® [ - I n + I  ¢~>A ® H ®/~r~+l. 

The first map  ¢1 is the Galois map tensored w i t h / ~ + 1 .  ¢2 is 61 tensored with 

H (the R-module structure on A ® H is given by the left R-module structure 

on A), and ¢3 is defined by ¢3 (a ® x ® ~) = ~ a ® xyl ® Y2, since for any left 

H-comodule V ( = / ~ + 1  in ¢3), 

H Q V - + H ® V ,  x ® v ~ + ~ X V _ l ® v o ,  

is bijective with inverse x ® v ~ ~ xS(v_ l )  ® Vo. 1 

To conclude from 3.5 that  I(A~+I/A~) = (An+I/An)I  for ideals I in R which 

satisfy IAo = AoI  we need the following technical lemma. 

Recall that  a left C-comodule W is coflat if the functor V ~-~ V D c W  on right 

C-comodules is exact. If  C is cosemisimple, i.e. C = Co, then any C-comodule 

is coflat. 

LEMMA 3.6: Let C be a coalgebra, R an algebra and X a left R-module and a 

right C-comodule such that  the comodule structure map X --+ X ® C is R-linear 

where X ® C is an R-module via X .  Then for any left C-comodule Y which is 

C-coflat and any ideal I in R 

I ( x u c v )  = (IX)UcY 

as subsets in X ® Y .  

Proof: By the assumption on X,  I ®R X is a right C-comodule via the comodule 

structure of X,  X [ 3 c Y  is a left R-module Via multiplication on X,  mad I X  is a 

sub C-comodule of X.  Since Y is C-coflat, the natural  map 

a: I ®R ( X C c Y )  -~ (I  ®R X)[]cY ,  a(r ® Z x, ® y,) = Z r ® x, ® Y, 
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for r E R, ~ xi ®Yi E X [ ~ c Y ,  is bijective. The multiplication map I Q R X  -+ I X  

is surjective and induces a surjective map 

/3: (I ®R X)E] cY  -+ ( I X ) D c Y  

since Y is C-coflat. Hence 3 a  is surjective. Let t be the inclusion map of 

( I X ) [ ~ c Y  into X @Y. Then the image of t 3a  is ( I X ) [ 3 c Y  since/3a is snrjective. 

But by definition of a and 3, Im(~3a) = I (XE]cY) .  This proves the claim. | 

We can now show the main result. 

THEOREM 3.7: Let Ho C H1 C . . .  C Hm = H be the coradieal t~ttration of  H 

and define t := m + 1. Then for any ideal I of R, 

(1: Ho) t C ( I :  H).  

Proof: (1) We first show for any H0-stable ideal L of R, A~L n+l C L A  for all 

0 < n < m. For n = 0, AoL C LA  follows from the definition of H0-stable ideals. 

Since LAo = AoL we know from 3.6 and its version for right R-modules that  

L(Ao[:]Ho[-ln+l) = (LAo)[:3H~f-tn+I = (AoL)[2Hof-tn+ 1 = (AoE]Ho[-I~+I)L. 

Hence by 3.5, LA,+ I  = A~+IL. In particular, An+IL C LA  + An for all n. 

Multiplying with L ~+1 from the right gives An+I Ln+2 C LA  + A,~L n+l. Hence 

the claim follows by induction. 

(2) To prove the theorem, apply (1) to L := ( I  : H0) and n = m. Hence 

A L  m+l C L A  and also ALm+IA  C LA. Therefore, 

L t C (ALtA)  N R C (LA) n R = L 

using 1.3(2). By 1.3(1), ( A L t A ) n  R is an H-stable ideal in R. Hence 

L t C (L :  H)  = ( ( I :  H0) :  H)  C ( I :  H).  | 

COROLLARY 3.8: f :  Ho-Spec(R) --+ H-Spec(R),  f ( I )  := ( I :  H),  is bijective. 

Proof: By 3.4 f is surjective. To show injectivity let I ,  J C H0-Spec(R) such that  

( I :  H)  -- ( J :  H).  Since I is Ho-stable, ( I :  H0) = I and, by 3.7, I t C ( / :  H)  = 

( J  : H)  -- J. Hence I C J since J is H0-prime. In the same way we get J C I .  
| 

COROLLARY 3.9: Let Q1,Q2 E Spec(R). Then 

( Q I : H ) = ( Q 2 : H )  ~ ( Q I : H 0 ) - - ( Q 2 : H 0 ) -  
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Proof: This follows from 3.8 since Spec(R) -~ H-Spec(R), Q ~-+ (Q : H),  factors 

through H0-Spec(R). I 

Finally we obtain the following refinement of 2.4. 

COROLLARY 3.10: Define equivalence relations on Spec(A) and Spec(R) by 

Pl ~A P2 ¢==a (Pl : (H*)0) = (P2 : (H*)0), 

Q I ~ R Q 2  ¢=:v (Q1 : H o ) = ( Q 2 : H o ) ,  

[or all P1, P2 E Spec(A) and Q1, Q2 E Spec(R). Then 

S p e c ( A ) / ~ A ~  Spee (R) /~R,  [P] ~ [Q] 

where P lies over Q, is bijectiye. 

Proof." Follows from 2.4 and 3.9. I 

Let k[H0] be the subalgebra of H generated by the coradical of H. Then k[H0] 

is a sub Hopf algebra of H and R C A(k[Ho]) is faithfully fiat k[H0]-Galois by 

[S1, 3.11, 2]. Clearly 3.8 and 3.9 also hold when H0 is replaced by k[H0]. In 

a sense, this reduces the study of H-Spec(R), R C A a faithfully flat H-Galois 

extension, to the case when H as an algebra is generated by its coradical. 

4. T h e  K r u l l  r e l a t i o n s  for  R C A 

In this section we define versions of the usual Krull relations for our Galois 

extensions R C A, and show that their verification can be reduced to the special 

case of smash products. Recall from Definition 2.3(1) that P E Spec(A) lies over 

Q E Spec(R) if and only if (Q : H) = P N R. It is clear from Lemma 2.2 that  

any P E Spec(A) lies over some Q E Spec(R); conversely for any Q E Spec(R), 

there exists some P E Spec(A) such that P lies over Q. 

As in [P, 16.6] we may use diagrams to represent some of the Krull relations. 

Thus, for example, the diagram in 4.1(3) means that given Q1 D Q2 in Spec(R) 

and P2 E Spec(A) which lies over Q2, there exists some P1 E Spec(A) such that  

P1 D P2 and P1 lies over Q1. 

It will be convenient for us to divide the relations into "basic" Krull relations 

and their "duals". That  in fact they are dual will be seen in Theorem 4.3. 

Definition 4.1 (The basic Krull relations): 

(1) H has t - ly ing  ove r  (t-LO) if for all faithfully flat H-Galois extensions R C 

A and any Q E Spec(R), there exist P1, . . .  ,P,~ E Spec(A), where n _< d imH,  
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such that  all Pi lie over Q, and such that (niL1 Pi) t C (Q : H)A. 

{Pal ~ 

Q 

(2) H has i n c o m p a r a b i l i t y  (INC) if for all faithfully flat H-Galois extensions 

R C A and any P2 C P1 in Spec(A) with/ '2  ¢/°1,  then P2 n R ~ P1 N R. 

(3) H has going up  (GU) if for all faithfully flat H-Galois extensions R C A, 

gl 

Q1 P2 
j /  

Q2 

Definition 4.1' (The dual Krull relations): 

(1)' H has t -co- lying over  (t-coLO) if for all faithfully fiat H-Galois extensions 

R C A, and any P E Spec(A), there exist Q1, . . .  ,Qm E Spec(R), where m < 
m d imH,  such that  P lies over all Qj, and such that  (~j=l  Qj)t c P N R. 

P 

{QJF 

(2)' H has co - incomparab i l i t y  (coINC) if for all faithfully flat H-Galois 

extensions R C A and any Q2 c Q~ in Spec(R), with Q2 ~ Q;, then (Q2: H) 

(QI :  H). 

(3)' H has co-going up  (coGU) if for all faithfully flat H-Galois extensions 
R C A ,  

P1 

Q1 /°2 . /  
Q2 

To show that  the "dual" relations are actually dual, we need a consequence of 

Theorem 1.4 for prime ideals. 

LEMMA 4.2: 

(1) The bijection ¢ of Theorem 1.4 induces the following commutative diagrams 
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on Spec: 
Spec(R) ¢ , Spec(A#H*) 

1' 1, 
H-Spec(R) e , H*-Spec(A) 

where f:  Q ~ (Q : H), g': Q' ~ Q' N A, and ~: I ~ IA.  The maps f and 
g' are surjective and ¢ and • are bijective. 

(2) For P e Spec(A) and Q e Spec(R), P lies over Q if and only if  ¢(Q) lies 

over P (in the extension A C A#H*) .  

Proof'. (1) f is well-defined and surjective by Lemma 2.2(2), and g' is well-defined 

and surjective by 2.2(3) applied to the extension A C A # H * .  It was also shown 

in 2.2(1) that  { is bijective. The commutativity of the diagram now follows from 

1.4, as the only change is in the lower right corner. However, as noted in 1.4, 

(Q:  H ) A  = q '  NA.  

(2) By Lemma 1.3(2), (Q : H) = P A R  ~ (Q : H ) A  = ( P N R ) A .  But 

by Theorem 1.4 (or (1) above), (Q : H)A  = ¢(Q) N A, and by Lemma 1.3(1), 

( P N R ) A  = ( P :  H*). Thus (Q: H) = P A R  if and only if ¢(Q) NA = ( P :  H*). 
| 

THEOREM 4.3: For each of the Krull relations in 4.1 and 4.1', H* has a basic 

Krull relation if  and only i f  H has its dual relation. That is, 

(1) H* has t-LO 4=~ H has t-coLO, 

(2) H* has INC .'. ;. H has colNC, 

(3) H* has GU ¢=:* H has coGU. 

Proof'. (1) ( 0 )  Assume that H* has t-LO, and consider a faithfully flat H-Galois 

extension R C A. Then A c A # H *  is an H*-Galois extension, and so has t- 

LO. Assume we are given P C Spec(A). By t-LO in A C A # H * ,  there exist 

Q~ , . . . ,  Q~ E Spec(A#H*), with all Q~ lying over P,  such that  

n 

( n  c (p: H*)(A#H*) = (P: H*)#H*. 
i = 1  

Define Qi := ¢-1(Q[) E Spec(R); by Lemma 4.2(2), P lies over every Qi since 

every Q~ lies over P. Moreover, since ¢ preserves products and intersections, 
( n i Q i )  t = ¢- l ( (n iQ~) t  ). Now I '  -- (P : H*)#H*  E H-Spec(AC/=H*); since 

(P  : H*) = (P  n R ) A  by Lemma 1.3(1), ¢-1(i , )  = p N R by Theorem 1.4. Thus 

( n Q i )  t C P A R  
i 
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and H has t-coLO. We can represent this in the diagram 

/ 
P 

oO" 

(~)  Conversely, assume that H has t-coLO, and consider a faithfully fiat 

H*-Galois extension R C A. Then A C A # H  is H-Galois. Given a prime 

Q E Spec(R), then Q' -- ¢(Q) E Spec(A#H). Since H has t-coLO, there exist 

P1 . . . .  ,Pm c Spec(A), such that Q' lies over all Pi, and so that (n~-i  pj)t c 
Q' N A. But by 4.2(3), we know that each Pi lies over Q, and by Theorem 1.4, 

Q' n A = (Q : H)A. Thus H* has t-LO. We express this in the diagram 

Q 

Q ! 

/ 

(2) (0 )  Assume that H* has INC and let R C A be a faithfully flat H-Galois 

extension; then A C A#H*  is H*-Galois. Assume Q2 c Q1 in Spec(R), with 

Q1 ~ Q2, and let Q~ :-- ¢(Qi) e Spec(A#H*). ThenQ~ C Q~ and V~ ~ Q~. 
' A  ' A  Since H* has INC, Q2N ~ Q1N . As noted in Theorem 1.4, QiNA = (Qi : H)A. 

Thus (Q2: H)A # (Q1 : H)A. But then by Lemma 1.3(2), (q2: H) # (Q1 : H), 

and so H has coINC. 

(¢=) Assume that H has coINC, and let R C A be a faithfully flat H*-Galois 

extension; then A C A # H  is H-Galois. Assume P2 C P1 in Spec(A) with P1 # 
P2; then (P1 : H) :fi (P2 : H) since H has coINC. By Lemma 1.3(1), P i n  R = 

(P~: H) N R and (P~ N R)A = (P~ : H). Thus P2 N R # P1 N R, and H* has INC. 

(3) (3 )  Assume that H* has GU and let R C A be a faithfully flat H-Galois 

extension; then A C A#H*  is H*-Galois. Assume there are P2 c P1 in Spec(A) 

and Q2 e Spec(R) with P2 lying over Q2. Let Q~ := ¢(Q2) c Spec(A#H*);Qt2 

lies over/)2 by 4.3(2). Since H* has GU, there exists Q~ E Spec(A#H*) such 

that Q~ c Q~ and Q~ lies over P1. Again by 4.3(3), P1 lies over ¢-1(Q~); setting 



210 S. MONTGOMERY AND H.-J. SCHNEIDER Isr. J. Math. 

Q1 :-- ¢-1(Q~), we see H has coGU. We express this in the diagram 

Q1 

Q~ 

Q~ 
/ r  

p~ Q~ 

P2 
/ 

(e=) Assume that  H has coGU and let R C A be a faithfully flat H*-Galois 

extension; then A C A # H  is H-Galois. Assume that Q2 c Q1 in Spec(R) and 

P2 • Spec(A) with P2 lying over Q2 and set Q~ := ~5(Q/); then Q~ c Q~ and 

Q~ lies over P2 by the lemma. Thus coGU for H gives some P1 • Spec(A) with 

P1 D P2 and Q~ lying over P1- But then P1 lies over Q1 and so H* has GU. We 

express this in the diagram 

Qi / f  
O; 

/ , 

/ 

P1 

P2 Q1 

I 
Q2 

We next show that  in order to verify the Krull relations for H,  we may assume 

that  the faithfully fiat H-Galois extension R C A is of a more special form; that  

is, R is H-prime . Before doing this we require some facts about prime ideals 

and passing to quotient rings• Recall from Lemma 1.6 that  for any H-stable 

ideal I of R, I A  = A I  is an ideal of A, and for/~ := R / I ,  A := A / I A ,  i t  C A is 

a faithfully flat H-Galois extension• Moreover, as noted in Remark 1.7, images 

(resp. preimages) of H-stable ideals in R (/t) are H-s table .  

LEMMA 4.4: Let R C A be faithfully fiat H-Galois, let I be an H-stable ideal 

of R, and let [t C A be as above. Then 

(1) I • H-Spec(R) if  and only if  i t  = R / I  is an H-prime ring. 

(2) If  P • Spec(A) with I A  C P, then/5 M/~ = {0} ¢==~ P M R = I. 

(3) I f  Q • Spec(n) with l c Q, then (O : H) = (O} ~ ( Q : H ) = I .  

Proof'. (1) This is clear by the remarks before the lemma about H-stable ideals• 
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(2) ( 3 )  Assume P A R  = {0}; then P A R  = {0}, and so P A R  C I A ( ~ R  = I. 

Thus P M R C I. Conversely I A  C P implies I C P n R. 

( ~ )  Assume P N R = I,  and choose p E P,  r E R such that /5  = ~ E / 5  n/~. 

T h e n p - r c I A C P ,  a n d s o r E P n R = I .  Then ~ = 0; that is, /h a /~ = {0}. 

(3) ( 3 )  Since I C Q, I c (Q : H) are H-stable ideals of R. Thus ( Q : H )  

is H-stable in /~, and so ( Q : H )  c (~) : H).  Thus (Q : H) = {0} implies 

(Q:  H) = {0}, and so (Q:  H) C I. Thus (Q:  H) = I. 

( ~ )  Assume (Q : H)  = I, and let J be the inverse image in R of (Q : H).  

Then since (Q : H) is H-stable , J is H-stable , and J C Q since (Q : H) c Q. 

Thus J c (Q:  H),  and so J C (Q:  H) = {0}. Thus (Q:  H) -- {0}. I 

PROPOSITION 4.5: Consider extensions R C A satisfying 

(,) R C A is faithfully fiat H-Galois and R is H-prime. 

(1) H has t-LO if and only if  for all extensions (*) there exist P 1 , . . . ,  Pn E 

Spec(A), with n ~_ d imH,  such that Pi NR = {0} for all i and (Ni~l Pi) t -- 

(o}. 
(2) H has INC if and only if  for all extensions (.) and any P E Spec(A), 

P N R = {0) implies P is a minimal prime of A. 

(3) H has GU if and only if  for all extensions (*), the diagram for GU in 4.1(3) 

holds when (Q2: H)  = P2 n R = {0).  

(I) '  H has t-coLO if  and only i f  for all extensions (,),  there exist Q1, . . - ,  Qm c 
r ~  

Spec(R), with m <_ dim H, such that (Q5: H) -- {0} for all j and (N5=1 Qj)t __ 

{o}. 
(2) ~ H has colNC if and only if for all extensions (*) and any Q c Spec(R), 

(Q : H)  = {0} implies Q is a minimal prime of R. 

(3)' H has coGU if and only if  for all extensions (*), the diagram for eoGU in 

4.1'(3)' holds when (Q2 : H) = P2 n R = {0}. 

Proof: (1) (=a) This is the special case of t-LO when Q = {0}, so that  I -- 

(Q:  H) = {0} is H-p r ime .  

( ~ )  Assume we are given some Q c Spec(R); then I = (Q : H)  E H-Spec(R). 

Le t /~  and fi~ be as in Lemma 4.5. Since/~ is H-prime , there exis t /51, . . .  ,Pn C 

Spec(fi~), with n < dim H, such that Pi M/~ = {0} for all i and ( h i / 5 ) t  _ (6). 

Let P~ be the ,inverse image of Pi in A; then each Pi E Spec(A), and Pi M R = I 

by Lemma 4.5(2). Thus each P~ lies over Q, since I = (Q : H).  Moreover 

c XA. 
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(2) ( 3 )  This is a special case of INC. For if P A R  = {0} and P is not minimal, 

then P2 C P for some P2 E Spec(A). But then P2 M R ~ P N R, a contradiction 

since P2 N R C P n R -- {0}. 

(¢=) Assume we are given P2 C P1 in Spec(A) and let I -- P2 NR;  I E 
H-Spec(R) by Lemma 2.2(3). Passing to /~  and A as in (1), /~ is H-prime and 

t52 C t51 in Spec(A). By Lemma 4.5, 152 n/~ -- (0). If P1 M R ~- P2 M R, then also 

t51 n / ~  = (0). By hypothesis this implies P1 is minimal, a contradiction. Thus 

P1 N R # P2 M R and H has INC. 

(3) This is proved by going to /~  C A as above. 

(1)' Although this is just the dual of (1), we give the details. 

(=~) This is the special case when P E Spec(A) such that P N R = 0; such a P 

exists by Lemma 2.2(3). 

( ~ )  Assume we are given some P c Spec(A); then I -- P n R E H-Spec(R). 

Passing to /~  and fil as before, we may assume [ = {0} and/~ is H-prime.  Thus 

by hypothesis, there exist (~1,. . . ,  (~,~ E Spec(/~) such that (Qj : H) = {0} for 

all j and such that (Nj ~)j)t = (0). Let Q1 , . . . ,Qm c Spec(R) be the inverse 

images of Q1 , . . . ,  Qm respectively; by Lemma 4.5(3), (Qj : H) = I = P A R and 

thus P lies over each Qj. Moreover (Nj Qj)t c I -- P n R. Thus H has t-coLO. 

(2)' (=~) This is a special case of coINC. For if (Q : H) = {0} and Q is not 

minimal, then Q2 ~ Q for some Q2 c Spec(R). But then (Q2: H) ~ (Q: H), a 

contradiction since (Q2 :H)  = {0}. 

(¢=) Assume that Q2 c Q1 in Spec(R) and let I = (Q2 : H); then I C 
H-Spec(R) by Lemma 2.2(2). Passing to/~ and A again, we see that ((~2 : H) = 

{0} by Lemma 4.5(3). If (Q1 : H) = (Q2 : H), then also ((~: : H) = {0} and 
so by our hypothesis, ~)1 is a minimal prime of/~. But I C Q2 c QI implies 
Q2 c Q):, in/~, a contradiction. Thus (Q: : H) # (Q2 : H) and H has coINC. 

(3) ~ This is proved routinely by passing to/~ C fi~. I 

In fact it is sufficient to verify the Krull relations for H in a much more special 

situation. 

COROLLARY 4.6: For any of the Krull relations in Definitions 4.1 and 4.Y, H 

satisfies the given relation if and only if  it satisfies the relation for H-Galois 

extensions of the form A = R # H ,  where R is an H-module a/gebra. 

Moreover, one may assume in addition that R is H-prime and that the KrulI 

relations have the special forms in Proposition 4.5. 

Proo~ First note that  in the proof of Theorem 4.3, in each case only the fact that  

H (or H*) satisfied the assumed property for the case A C A # H  (or A C A # H * )  
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was needed; that  is, for the case when the Galois extensions is an ordinary smash 

product.  This observation implies the first part  of the corollary, for if H satisfies 

the property for smash products, then H* satisfies its dual, and so H satisfies 

the property in general, using Theorem 4.3 and its proof. 

To see the second part,  we may pass to quotients as in Proposition 4.5. One 

only needs the additional fact, as noted in Remark 1.7(2), that  if A = R # H ,  

then ,4 ~ / ~ # H ,  again a smash product. I 

We can now connect our definition of lying over to the more usual one involving 

minimal primes. 

COROLLARY 4.7: Let R C A be faithfully fiat H-Galois. Assume P C Spec(A) 

and Q E Spec(R) as usual. 

(1) I f  H has t-LO and INC, then 

P lies over Q ¢==> P is minimal over (Q : H)A.  

Assume in addition that R is H-prime . Then P is minimal in Spec(A) 

if and only if P N R = {0}. Moreover A has n <_ dim H minimal primes, 
. . .  n p N t call them P1, Pn; if N -- n i= l  i, then = {0} and N is the largest 

nilpotent ideal of A. 

(2) I f  H has t-coLO and colNC, then 

P lies over Q ~ Q is minimal over P N R. 

Assume also that  R is H-prime.  Then Q is minimal in Spec(R) if and only 

if (Q : H) = {0}. Moreover R has m <_ dim H minimal primes, call them 
m Q I , - - . ,  Qm; if  N = n j=l  Qj, then N t = {0} and N is the largest nilpotent 

ideal of R. 

Proof: (1) First assume that  P is minimal over (Q : H)A.  If H has t-LO, then 

there exist P1 , . - - ,  Pn e Spec(A), with all Pi lying over Q, such that  (n~'_l Pi) t c 

(Q : H ) A  c P. Since P is prime, Pj c P for some j;  since P is minimal, P = Pj. 

Thus P lies over Q. Conversely assume that  P lies over Q, and say that  there is 

some P2 E Spec(A) such that  (Q : H ) A  C P2 C P. If H has INC and P2 ¢ P 

then P 2 N R  ¢ P A R ;  but (Q : H)  -- P 2 N R  = P n R s i n c e  P l i e s o v e r  Q, a 

contradiction. Thus P2 -- P and P is minimal. 

When R is H - p r i m e ,  I -- {0} is an H-pr ime ideal, and we apply the above fact 

to the case when (Q:  H)  = {0} to see that  P is minimal in Spec(A) if and only 

if P A R  = (Q : H) = {0}. Now use the formulation of t-LO in Proposition 4.5(1) 

to see that  A has primes P1, - . .  ,Pn with Pi N R ~- {0} (which are necessarily 
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minimal by the above) such that if N = Nin.=_l Pi, Nt = {0} .  Since for any other 

P C Spec(A), (I-L Pi) t C P, and so Pi C P for some i, the set {P1 , . . . ,  Pn} are 

all the minimal primes of A. Moreover since A / N  is semiprime, N is the largest 

nilpotent ideal of A. 

(2) This argument is similar to (1). If Q is minimal over P N R ,  it follows from 

t-coLO that  P lies over Q. Conversely if P lies over Q, one uses coINC to see 

that  Q is minimal over PNR.  Thus P lies over Q if and only if Q is minimal over 

P A R, and thus when R is H-pr ime ,  it follows that Q is minimal in Spec(R) if 

and only if (Q : H) = {0}. The last statement about N and the set of minimal 

primes now follows from the formulation of t-coLO in Proposition 4.5(1)'. | 

Remark 4.8: In this section we have ignored one of the fundamental Krull rela- 

tions, namely going down (GD); this is because it is in fact only a weaker version 

of t-LO. To see this, one can make the definitions (analogous to going up) as 

follows: H has GD (resp. coGD) if for all faithfully flat H-Galois extensions 

R C A, the diagram (i) (resp. (ii)) holds: 

1'1 
/ / 

(i) Q1 P2 (ii) Q1 
I °, ° " 

Q2 Q: 

P1 

I 
/'2. 

As we showed for the other Krull relations, GD and coGD are dual, and it suffices 

to check them for smash products A = R # H  in which R is H-pr ime .  

We now compare these definitions with t-lying over: 

SUBLEMMA: If H has t-LO (respectively, t-coLO), then H has GD (resp., coGD). 

Proof." By duality it suffices to show that t-LO implies GD. Thus we assume that  

QR c Q1 in Spec(R) and that  P1 lies over Q1- By t-LO, there exist P21,--- P2m E 

Spec(A) such that  all P2, lie over Q2 and such that (~i~1 P2~) t C (Q2 : H)A. 
But (Q2 : H)A c (Q1 : H)A = (P1 N R)A C P1. Thus for some j ,  P2j C P1, and 

P2j lies over Q2. By setting/)2 = P2j, the result is proved. II 

Example 4.9: Let H -- kG be a group algebra. By Ulbrich's theorem, R C A is 

H-Galois if and only if A is strongly G-graded with R = A1, that is AgAh = Agh 
for all g, h E G, where A = ~)gea Ag. Thus in this case faithful flatness is 

automatic, since R is a direct summand of A. 
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We claim that  H satisfies all of the Krull relations in 4.1 and 4.1'. First, by 

Corollary 4.6, it suffices to show that  they hold when R is an H-module  algebra 

and A = R=//=H, that  is when there is an ordinary action of G on R. But  now 

the "dual" Krull relations t-coLO, coINC, and coGU are almost trivial. For, 

if I ~ G-Spec(R) then there exists Q c Spec(R) such that  I = N x e c ( x  • Q); 

conversely given Q e Spec(R), then (Q : G) = NxeG(x .  Q) is G-prime. Thus 

kG satisfies 1-coLO. To see coINC, note that  (Q : G) = (Q' : G) if and only if 

Q' = x ~ Q for some x E G. Finally coGU holds, for if P1 D P2 in Spec(A) and 

P2 lies over Q2, then P1 n R = N~ x • Q for some Q E Spec(R) since P1 M R 

is G-prime. Thus P 2 N R =  N x x ' Q 2  c P 1 M R  C Q, and so for s o m e x  E G, 

x-  Q2 c Q. But then Q2 c x -1 • Q and we may set Q1 := x -1 " Q. 

The fact that  H satisfies t-LO, INC, and GU follows from the rather non-trivial 

work of Lorenz and Passman [P, 16.6], where these relations are shown for crossed 

products A = R * G = R # ~ k G ;  again, this suffices by 4.6. 

Thus all of the Krull relations hold for strongly graded rings; dualizing, all of 

the Krull relations hold for a faithfully fiat (kG)*-Galois extension R C A (that 

is, there is a G-action on A). 

Remark  4.10: We now consider the more general case when H is finite- 

dimensional and pointed. Then the question as to whether H has t-LO or INC 

is open. But H has m-coLO for some m < dim H depending on the coradical 

filtration of H,  coINC, coGU and GU. Moreover, lying over in the classical sense 

does hold; that  is, for any Q E Spec(R), there exists P E Spec(A) such that  Q is 

minimal over P N R. 

Proof: Again by Corollary 4.6 it suffices to consider extensions R c A -- R ~ H  

where R is an H-module  algebra. Then GU is shown in [CRW, 3.6]. Using Chin's 

Lemma 2.5 the other Krull relations follow easily as in the previous example for 

group algebras. To see m-coLO, let P E Spec(A). By 2.2, P M R -- (Q : H)  for 

some Q c Spec(R). By 2.5(1), 

x. Q c (Q: H). 
xEG 

This shows m-coLO. As in 4.9, coINC holds since for prime ideals Q1,Q2 E 

Spec(R), (Q1 : H)  = (Q2 : H)  if and only if Q2 = x .  Q for some x E G(H)  

by 2.5(2). In the same way one shows coGV (see [Ch90, 3.6]). Finally, we see 

that  classical lying over holds. If Q E Spec(R), then Lemma 2.2 gives some 

P C Spec(A) such tha t  P M R = (Q : H).  But now coINC implies that  Q is 

minimal over P M R. I 
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5. C o m o d u l e  a lgebras  w i th  a t o t a l  in tegra l  (or,  m o d u l e  a lgeb ras  w i t h  

a s u r j e c t i v e  t r a ce )  

In this section we show that for many of the Krull relations of Section 4, our 

assumption that R C A be faithfully flat H-Galois can be considerably weak- 

ened. We consider here H-comodule algebras A, with R = A c°H, such that  A 

has a t o t a l  i n t eg ra l  for H in the sense of Doi: that is, there exists a unital 

right H-comodule map 7: H --4 A. Equivalently, A is an injective H-comodule 

[D]. Such a map 3' always exists if R C A is faithfully flat H-Galois [D, 1.6], 

[S1, Th. I]. 

Since the arguments we use generalize those for the action of a finite group in 

[M81] and for group graded rings in [CM], [MSm], we will work here with actions 

of H rather than coactions. Thus, assume that H is finite-dimensional and let A 

be an H-module algebra with invariants R = A H. Choose t E f~/; then ~: A --+ R 

given by t(a) = t -  a is a t r a c e  m a p .  t is su r j ec t i ve  if {(A) = R; equivalently 

there exists c E A such that t .  c = 1. 

That  this notion is equivalent to the one above was shown by Doi and by Cohen 

and Fischman; see [M, 4.3.9]. In particular the trace map is always surjective if 

H is semisimple. 

LEMMA 5.1: Let A be a left H-module algebra, and consider A as a right H*- 

comodule algebra. Then t: A -+ A n is surjective if  and only if  there exists a total 

integral 7: H* --+ A. 

Since our extension R C A is not Galois, we do not have a correspondence 

between ideals as in Lemma 1.3. Instead, the role of "H-prime " ideals of R will 

be played by the set of ideals 

{P n R [ P E Spec(A)} 

and our notion of P lying over q in 2.3 is replaced by q being minimal over PM R, 

for P E Spec(A) and q E Spec(R). Morita equivalence of A # H  with R will be 

replaced with a weaker correspondence, as follows. We need a classical lemma. 

LEMMA 5.2: Let S be a ring and 0 ~ e = e 2 E S. Let ~: S --4 eSe be given by 

s ~-4 ese, and let Spe%(S) = {P E Spec(S) I e ~ P}.  Then: 

(1) ~o takes ideals o r s  to ideals of eSe, preserves intersection of ideals, and for 

I ,  J <1 S, ~o(I)~(J) C ~( IJ) .  

(2) ~o preserves containments, and i f I  <l S, P E Spe%(S) with T(I)  C T(P) ,  

then I C P. 

(3) ~ induces a bijection Spece(S ) - -~ Spec(eSe). 
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For a proof of (3), see [P, 17.8]; (2) is implicit in those arguments and (1) is 

straightforward. 

In our situation, more can be said. From [M, 4.3.4], we have 

LEMMA 5.3: Le A be a left H - m o d u l e  algebra with surjective trace, say t .  c = 1, 

and let S = A # H .  Then  e := ( l # t ) ( c # 1 )  = tc is an idempoten t  in S and 

eSe  = A H e  -~ A H, where the last isomorphism (of algebras) is given by ae ~+ a. 

The proof of 5.3 follows from the elementary computation 

( . )  e ( a # h ) e  = ¢(h)eae = ¢(h) ( t .  (ca))e. 

Thus when a • A H, eae -- ae since t • e -- 1. 

LEMMA 5.4: Let A and e be as in 5.3 and let ~: A # H  -+ AHe  be as in 5.2. 

(1) For any J <3 A, 

~ ( ( J :  H ) # H )  = ~ ( ( J :  H)) = ( J N R ) e .  

(2) For q • Spec(R) and P • Spec(A), 

q is minimal  over P n R Q _ ~ - l ( q )  is minimal  

over I = (P  : H ) # H  in AC~H 

(here we have identified ( J N R)e  with J n R and qe with q). 

Proo~" (1) ~ ( ( J  : H ) # H )  = e ( ( J :  H ) # H ) e  = e ( J :  H)e = ~ ( ( J :  H)),  by (*), 

and e ( J  : H ) e  = (t . ( c ( J :  H ) ) ) e  C (t . ( J :  H ) ) e  C ( J  N AH)e  ~ J n R. 

Conversely, clearly J n R c ( J  : H),  and so 

( J N n ) e  = e( J n R)e  = ~( J N n )  C ~ ( ( J :  g ) ) .  

(2) ( 3 )  Assume q is minimal over P n R. If Q is not minimal over I,  choose 

Q2 • Spec (A#H)  with I C Q2 c Q. Now e ¢ Q since ~(Q) ~ R; thus 

Q 2 , Q  • Specc(S). By Lemma 5.2(3) it follows that ~(I)  C ~(Q2) c ~(Q). 

Setting q2 := ~(Q2) and using part (1), we see P N R C q2 C q, a contradiction 

to the minimality of q. Thus Q is minimal over I. 

( ~ )  Assume Q is minimal over I,  but for some q2 • Spec(R), P n R C q2 C 

q. Let Q2 :-- ~-1(q2) • Spe%(A#H);  then Q2 c Q since ~ is bijective on 

Spe%(A#H) .  Also by 5.2(2), I C Q2 since Q2 is prime and ~(I)  -- P N R C 

(fl(Q2) -- q2. This contradicts the minimality of Q. I I  
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THEOREM 5.5: Let A be an H-module  algebra with surjective trace and let 

R = A H. Assume that H satisfies t-LO. 

(1) For each P E Spec(A), there are (only) a flnite number of primes in Spec(R) 

minimal over P N R, call them q l , . . . ,  qn, and 1 < n < d imH.  Moreover i f  
n 

N = n i=l  eli, then N t c P N  R. 

(2) I f  also H has INC, then for each q E Spec(R), there exists P E Spec(A) 

with q minimal over P N R, and i f  q is minimal over P'  N R for some other 

P '  C Spec(A), then P'  N R -- P N R. I f  in addition H has t-coLO, there are 

only m <_ dim H such primes in Spec(A). 

(3) I f  also H has colNC, and P2 g P1 in Spec(A), then P2 N R ¢ P1 N R. 

(4) I f  also H has coGU and INC, then R C A has "going up" in the sense that 

if  q2 C ql in Spec(R) and/ '2  E Spec(A) with q2 minimal over P2 n R, then 

there exists P1 C Spec(A) with P1 D P2 and ql minimal over P1 n R. 

Proof." (1) We apply t-LO to the extension A C A # H ,  to see that  there 

exist Q 1 , . . . , Q m  E Spec(A#H) ,  m ___ d imH,  such that Q i N A  = (P : H)  

for all i; moreover, if M = A mi=l Qi then M t c (P  : H ) # H .  Applying ~ and 

Lemma 5.4(1), 

 o(M) ' c c H ) # H )  = e n R. 

m But also ~(M)  = ni=l ~fl(Qi). In this intersection, we may omit any ~a(Qi) 

such that  e E Q~, for then ~a(Qi) = R. We may also omit any ~(Qi) such 

that  ~(Qj)  c ~(Qi) for some j .  Thus by renumbering, we may write ~(M) = 
n n i= l  ~o(Qi), n _< m, such that the {~(Q~)} are proper and incomparable. Now 

n set qi := ~ - l ( Q i )  and N = ~(M); then N = n i _ ~ l  qi and N t C P n R by the 

above. We note here that  e ¢ N t, so e ~ N, so there is at least one proper qi. If 

q C Spec(R) with q D P N R, then q D N t and so q D qi, for some i. It follows 

that  {ql,. --, qn} is precisely the set of primes in R minimal over P n R. 

(2) Let Q = ~ - l (q )  E Spe%(A#H) .  Then by Lemma 2.2, there exists P C 

Spec(A) with (P  : H) = Q N A. By INC and Corollary 4.7(1), Q is minimal over 

(P  : H ) ~ H ,  and so by Lemma 5.4(2), q is minimal over P A R .  If also q is minimal 

over P ' N R ,  then 5.4(2) implies Q is minimal over ( P ' : H ) # H .  By 4.7(1) again, 

QNA---- ( P ' :  H).  But then ( P :  H) = ( P ' :  H) and so P A R =  P ' N R b y  5.4(1). 

The above argument shows that  for any P G Spec(A), q is minimal over P n R 

if and only if (P  : H)  = Q N A = ~- l (q )  n A. But when H has t-coLO, there are 

only m < dim H such primes in Spec(A). 

(3) Assume that P2 C P1 in Spec(A). Then by coINC, (P2 : H) C (P1 : H),  

and thus in A # H ,  I2 = (P2 : H ) # H  C I1 = (P1 : H ) # H .  By t-LO, there are 
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{L2~}, {LI~} C Spec(A~=H), with at most dimH primes in each set, such that 

L2j A A = P2 and L1, N A = P1 for all i, j .  Moreover, if N1 = Ni LI~ and 

N2 = Nj L2j, then N1 t C 11, and N2 t C 12. Choose Llk so that e ~ Llk (this is 

possible as in (1), since otherwise we would have e E N1, and so e E ~(N1 t) C 

/)1 f~ R, a contradiction). We may also assume that Llk is minimal over 11, as in 

(1). Then 

L2j = N2 t C I2 C I1 C Llk,  

and thus for some j ,  L2j C Llk. In fact L2j ~ Llk since they have distinct 

intersections with A. Since L2j, Llk E Spece(A#H),  ~(L2j) C 9~(Llk). Moreover 

9(I2) = P 2 n R  C ~(L2j). Setting q2 = ~(L2j) and ql = ~(Llk), i fP2NR = P I A R  

we get 

P l n R C  q2 C ql. 

But by Lemma 5.4(2) and our assumption on Llk, ql is minimal over P1 N R, 

a contradiction. Thus/°2 V1 R ¢ P1 N R. 

(4) Assume we are given q2 C ql, and P2 as in the statement of (4). Let Qi = 

9~-l(qi) e Spe%(A~H);  then Q2 is minimal over (P2 : H)C~H by Lemma 5.4(1), 

and so by Corollary 4.7(1), (P2 : H) = Q2 N A. By coGU, there exists/ '1 D P2 

so that  Q1 lies over P1 in our old sense, that is (P1 : H) = Q1 ~ A. By 4.7 again, 

this means that  Q1 is minimal over (P~ : H ) # H .  Again by 5.4(2), ql is minimal 

over P1. | 

We can now extend the notion of equivalent primes in R e from [M81]. 

Definition 5.6: Let A be an H-module algebra, with R = A H. For ql,q2 E 

Spec(R), we say 

ql ~ n  q2 ¢==a there exists P E Spec(A) such that 

ql and q2 are both minimal over P V/R. 

In general ~R is not an equivalence relation; however, Theorem 5.5 gives 

sufficient conditions for this to happen. The corollary extends [MS1] for group 

actions and [MSm] for group gradings. 

COROLLARY 5.~: Let A be an H-module  algebra with surjective trace, let 

1~ = A H, and assume H has t -LO and INC. Then: 

(1) ~ n  as in Del~nition 5.6 is an equivalence relation on Spec(R). Each 

equivalence class [q] contains at most  dim H elements. 
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(2) The map 

f :  Spec(A) --+ Spec (R) /~R,  P ~+ {q E Spec(n) [ q is minimal over P N R} 

is well-defined, surjective, and induces a bijection 

f:  Spec(A)/ ~ g - - ~  S p e c ( R ) / ~ R  

where ~H is as in Definition 2.3. 

Proo~ (1) First, ~R is reflexive since, by Theorem 5.5(2), there exists P E 

Spec(R) such that  q is minimal over P n R, and ~R is trivially symmetric. 

To see that  it is transitive, assume ql ~R q2 and q2 ~R q3. Then there exist 

P1, P2 C Spec(A) such that ql and q2 are minimal over P1 N R and such that q2 

and q3 are minimal over P2 n R. But then q2 is minimal over both P1 N R and 

P2 N R; by 5.5(2), P1 N R = P2 N R and so ql ~R q3- The second statement 

follows from 5.5(1). 

(2) By (1), f ( P )  = [q], an equivalence class in Spec(R), except for the possibil- 

ity that  there are no primes q minimal over P n R; however, this cannot happen 

by Theorem 5.5(1). Thus f is well-defined, f is surjective by 5.5(2). Now if 

f ( P )  = f ( P ' ) ,  then some q E Spec(R) is minimal over both P N R and P '  n R. 

By 5.5(2), P n R = P '  N R and thus (as noted in the proof) (P  : H) = (P '  : H).  

That  is, P "~H p r  Conversely, 

P ~ H P '  ~ ( P : H ) = ( P ' : H )  ~ P N R = P ' N R  ~ f ( P ) = f ( P ' ) .  

Thus f induces a bijection y on the quotient spaces. I 

Part  (2) can be considered as a generalization of Corollary 2.4 when H also 

has t-LO and INC, because by 4.7 "lying over" is equivalent to "minimal over 

P A R " .  

We remark that  unlike the faithfully flat Galois case, not all the Krull relations 

hold in such extensions, even if H (and H*) have all the relations in Definition 4.1 

and 4.Y. For example, the analog of "coGU" fails for an action of H =- kZ2 over 

a field of characteristic not 2, by an example of Montgomery and Small [MSm], 

[P, pp. 289-290]; since H ~ H*, it also fails for Z2-graded rings. 

6. T r a n s i t i v i t y  

We consider when the class of finite Hopf algebras satisfying various of the Krull 

relations is closed under extensions. 
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In this section, let H be a finite-dimensional Hopf algebra , K a normal sub 

Hopf algebra of H,  H := H / H K  + and 7r: H --+/t ,  7r(h) = h, the quotient map. 

Recall that  a sub Hopf algebra K of H is normal if it is stable under both  adjoint 

actions, i.e. ~ hlkS(h2) and ~ S(hl)kh2 are in K for all k E K and h E H.  (In 

the finite case it suffices to assume stability under one of the adjoint actions.) 

LEMMA 6.1: 

(1) K C H ~>/T/ is a strictly exact sequence of Hopf algebras [$4], i.e. H is 

(left and right) faithfully flat over K.  Hence H --+ fiI is conormal and 
K = H c°[4. 

(2) The dual sequence of Hopf algebras fI* -+ H* --+ K* is again strictly exact. 

Proof: By [NZ] H is free over K,  hence faithfully flat . Then H - + / ~  is conormal 

and K = H c°~ by [$4, 1.4]. Hence by duality,/~* is isomorphic to a normal sub 

Hopf algebra of H*, and the dual sequence is strictly exact. II 

We also fix a faithfully flat H-Galois extension R C A and let 

B := A(K)  = A A I ( A ® K ) .  

Then B is a right K-comodule algebra by restricting AA to B. A will be consid- 

ered as a right H-comodule algebra via 

A - ~  A ® Hid®[ A ® fI.  

LEMMA 6.2: R C B is faithfully flat K-Gatois, and B C A is faithfully flat 

~I-Galois. (This also holds for infinite-dimensional H when H is faithfully flat 

over K.)  

Proof: R C A(K)  = B is faithfully flat K-Galois for any sub Hopf algebra K 

by [$1, 3.11(2)]. A c°H C A is faithfully flat /~-Galois by IS1, 3.10] since H is 

r igh t / ) -cof la t  by [NZ]. Thus it remains to show that  B = A c°H. For all a E B, 

~ a o ® a l  C A ® K ,  hence ~-~ a0 ® ~1 = a ® i  since al = e (a l ) i ,  and so a E A c°~. 

Conversely, if a E A c°H, then ~ a0 ®al  = a® i and ~ a0 ®al  ®&2 -- ~'~ a0 ®al  ® i. 

Hence ~ a 0  ® al E A ® H c°~r -- A ® K since H c°~ -- K by 6.1. Thus a E B. 
II 

The next lemma is needed to prove transitivity of Krull relations from R C B 

and B C A to R C A, that  is, to prove "going up" from K a n d / t  to H.  

LEMMA 6.3: 

(1) H-stable ideals in R are K-stable, and for any ideal I in R, ((I  : K)  : H) = 

( I :  H).  

(2) For any ideal J in B,  ( J : / ~ )  N R = ( ( J  N R ) :  H).  
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Proof." (1) This is a special case of 3.3. However, here the proof follows directly 

from the category equivalences ,~4B ~ MA ~ and B M  ~ A  M H. For any ideal I 

in R these equivalences imply ( I A )  N B = ( I B A )  N B = I B  and (AI )  n B = B I .  

Thus I B  = B I  if I A  = A I .  

(2) (a) First we show that J N R is H-stable for any / t - s t ab l e  ideal J in B. 

Since J is/4-stable, J A  = A J  is an ideal in A and J A N  R is H-stable by 1.3(1). 

By 1.3(2), ( J A )  N B = J. Hence J N R = ( JA)  N B N R = ( J A )  N R is H-s tab le .  

(b) For an arbitrary ideal J in B, ( J  : / t )  is/~-stable. Hence (J  : /~)  n R is 

H-stable by (a). Thus 

( J :  H) N R C ( ( J N R ) :  H). 

To prove the other containment, let j t  := ((JAR) : H). Then B J '  = J I B  since J~ 

is H-stable hence K-stable by (1). Thus J I B A  = J~A = A J  ~ = A B J  ~ = A J ~ B ,  

and J I B  = B J  ~ is an H-stable ideal in B contained in J .  Therefore J~ C 

( J : / I )  n n .  . 

We can now show transitivity for "lying over". 

COROLLARY 6.4: Let  P C Spec(A), L E Spec(B), and Q c Spec(R). I f  P lies 

over L and L lies over Q then P lies over Q. 

Proof." By assumption, P N B = (L : / t )  and L N R = (Q : K).  Hence by 6.3, 

P A R  = ( P N B ) N R  = ( L : / J )  N R  = ((L n R) :  H) 

= ((Q : K) : H) -- (Q : H). I 

We will prove our results on transitivity of the Krull relations in an axiomatic 

setting since we want to apply them in two different situations. Our abstract 

transitivity results will prove "going up" of the Krull relations from K and / t  

to H.  They will also be used in the next section to study the question of which 

Krull relations are reflected under field extensions. 

Let R C A be any ring extension; we wish to consider certain relations between 

prime ideals P in A and prime ideals Q in R. Formally, the relation is a set 

C Spec(A) × Spec(R). The relation is called a ly ing  over  r e l a t i o n  if P n R C Q 

for all (P, Q) E 7~. A lying over relation is called s t r o n g  if P N R = P~ N R for 

all P, P '  E Spec(A) lying over the same prime ideal in R. 

In this section we will use the lying over relation of 2.3 for H-Galois extensions. 

In the next section we are given a field extension k C E and study the base field 

extension S c S ® E, S any k-algebra. In this example, P C Spec(S ® E) is said 

to lie over Q E Spec(S) if P N S = Q. Both are examples of strong lying over 

relations. 
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Detinition 6.5: Let R C A be a ring extension with a lying over relation. 

(1) Let t, n > 1. The extension R C A has (t,n)-coLO if for all P E Spec(A) 

there are Q1,---Q~ c Spec(R) such that P lies over all Qi and (~i~1 Qi) t c 

P n R .  

(2) R C A has GU if for all Q1 c Q2 in Spec(R) and P1 c Spec(A) lying over 

Q1 there is a P2 E Spec(A) lying over Q2 and containing P1- 

(3) R C A has INC if for all/)1 C/ '2  in Spec(A), P1 N R ¢ P2 M R. 

(4) We say R C A has property (7)) if for all P C Spec(A), (P  N R ) A  is an 

ideal in A and ((P n R)A)  A R = P n R. 

THEOREM 6.6: Let R C B and B c A be ring extensions with lying over rela- 

tions. De//ne a lying over relation for R C A by transitivity: P E Spec(A) lies 

over Q E Spec(R) if there is an L E Spee(B) such that P lies over L and L lies 

over Q. Let m, n, s, and t be positive integers. 

(1) Assume R C B has (s, m)-eoLO and B C A has (t, n)-coLO. Then R C A 

has (st, mn)-coLO. 

(2) Assume R C B has (s, m)-coLO and GU, and B C A has (t, n)-coLO and 

GU. Then R C A has GU. 

(3) Assume R C B satisfies (7 ~) and has INC, and B C A has a strong lying 

over relation with (t, n)-coLO and INC. Then R C A has INC. 

Proof'. (1) Let P E Spec(A). Since B C A has (t, n)-coLO, there are L I , . . .  Ln E 
Spec(B) such that  P lies over all L~ and (["]]-1 Li) t C P V} B. Since R C B has 

(s, m)-coLO, for all Li E Spec(B) there are Qi l , . . .  Qim • Spec(R) such that  Li 

lies over all Qij and (N~-I Qij)~ c Li n R. Then 

(rim tst (i~ (j~ )s)t (iq )t ( fi ) N N Qq c Q~j c (Li NR) c L~ ~ R 
i = 1  j----1 ~ --  --  --  i = 1  

c P A B A R = P n R .  

Also P lies over all Qij since P lies over Li and Li lies over Qij for all i , j .  

(2) Let Q2 c Q1 in Spec(R) and P2 • Spec(A) lying over Q2- Since B C A 
has (t, n)-coLO there are L1 , . . . ,  Ln ~ Spec(B) such that  P2 lies over all Li and 

?7, n L n (Ni=lLi)  t c / ) 2 M B .  Then ( N i = l ( i M R ) )  t C ( N i = l i i )  t M R C P 2 M R "  Since 

P2 lies over Q2, P2 N R c Q2 c Q1- Hence Li M R C Q1 for some i since Q1 is 

prime. Since R c B has (s,m)-coLO there are Q~, . . .  Q'm • Spec(R) such that  

Li lies over all Qj and "~ ' ~ ' (~ j=l  Qj) c Li M R. Hence Qj c Q1 for some j since 

Li N R is contained in the prime Q1. Let Q0 := Q~. Then Q0 c Q1 in Spec(R) 

and Li • Spec(B) lies over Q0. By GU for R C B, there is a prime ideal L~ in B 
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lying over Q1 and containing Li. By construction, P2 lies over Li. Hence by GU 

for B C A, there is a prime ideal P1 in A lying over L~ and containing P~. This 

proves GU for R C A since P1 lies over L~ and L~ lies over Q1. 

(3) Let P2 C P1 be prime ideals in A and assume P2 n R = P1 A R. Since 

B C A has (t, n)-coLO there are Q1 , . . . ,  Q,~ G Spec(B) such that P1 lies over all 

Qi and (n~=l Qi) t c P1 n B, and also Q~, . . . ,  Q~ E Spec(B) such that P2 lies 

over all Q~ and (Nj=I Q~)t c P2 n B. Hence (Ny=l Q~)t C P2 n U c P1 N U. 

Since P1 lies over Qi, P1 N B c Qi for all i. Thus for all i, Q~ c Qi for some 

j .  B y I N C  for B C A w e k n o w P 2 n B  C P l n B -  S inceB  C A h a s a s t r o n g  

lying over relation, P2 and P1 do not both lie over the same prime ideal in B. In 

particular, Q~ ¢ Qi for all i, j .  By INC for R C B we therefore have shown that  

for all i, Q~ N R c Qi N R for some j.  Since P2 n R -- P1 N R by assumption, 

n n 

(n(Q  n n))  t c n n c P2 n R = P, n n.  
i = 1  i = l  

Since P2 lies over all Q~-, we have P2 n n = P2 N B N n C Q~ N n.  Therefore 

(n i~ l (Qi  n R)) t c Q~ n R for all j .  Since R c B satisfies property (7~), for all j ,  

(Ql N R)B  c Q~ for some 1 and 

@ n R -- ( (@ n n ) B )  n R) c n n .  

Altogether we have shown that for all i, Qt N R c Qi n R for some I. But this is 

impossible since the number of the Q~ is finite. | 

We now go back to the situation of Galois extensions R C B C A described in 

the beginning of this section. Theorem 6.6 together with 6.4 then implies 

THEOREM 6.7: Let H be a finite-dimensionM Hopf algebra , K a normal sub 

Hopf algebra of H and [f := H / H K  +. 

(1) Assume K has s-LO (resp. s-coLO) and [-I has t-LO (resp. t-coLO). Then 

H has st-LO (resp. st-coLO). 

(2) Assume K has s-coLO and [I has t-coLO (resp. s-LO and t-LO) for some 

s and t. I l K  and f-I have GU (resp. coGU), then so has H. 

(3) Assume [t  has t-coLO (resp. K has t-LO) for some t. I f  K and [-I have 

INC (resp. colNC), then so has H. 

Proof'. In all cases, by 6.1 and 4.3 it suffices to prove the coLO version. Lying 

over as defined in 2.3(1) is clearly a strong lying over relation. By 1.3(1) and (2) 

faithfully flat Galois extensions satisfy property (P). Hence the theorem follows 
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from 6.6, since by 6.4 "lying over" for _R C A in the sense of 6.6 implies lying 

over. II 

7. E x t e n d i n g  t h e  g r o u n d  field 

Let H be a finite-dimensional Hopf algebra.  We first note that  trivially all Krull 

relations for H are preserved under field extensions. 

LEMMA 7.1: Let k C E be any field extension. I f  R C A is a faithfully flat 

H ®E-Galois extension over the ground field E, then R C A is also faithfully flat 

H-Galois over k by restriction of the ground field. In particular, i f  H satisfies 

one of the Krull relations, then so does H ® E. 

Proof: R C A is an extension of E-algebras, hence of k-algebras by restriction. 

The H ® E-comodule structure of A defines an H-comodule algebra structure 

over k by A -4 A NE (H N E) ~ A ® H. The Galois map for A over k is 

A Q R A  -4 A G E ( H ® E )  ~ A Q H .  

Hence R C A is faithfully flat H-Galois. Note that  t-LO, INC, . . .  are all 

defined in terms of H-Galois extensions R C A and they only depend on the ring 

extension R C A. Hence the lemma follows trivially. | 

The more difficult question is which properties of H are reflected under field 

extensions. Let k C E be any field extension. If S is any k-algebra we will 

use "lying over" for the ring extension S C S' = S ® E in the usual sense: 

P '  E Spec(S')  lies over P C Spec(S) if P ' N S  = P. For any ideal J in S',  

(J  N S)S '  = (J  n S ) E  is an ideal in S',  and for any ideal I in S, ( IS ' )  N S = I. In 

particular, S C S' satisfies property (7 ~) in the last section. The ring extension 

S C S'  has the following Krull relations: 

LEMMA 7.2: 

(1) Spec(S')  -4 Spec(S), P'  ~-+ P'  n S, is well-defined and surjective. 

(2) s a s' h ~  OV. 

(3) I f  k C E is algebraic, then S C S' has INC. 

Proof." (1), (2), and (3) are shown in JR, 2.12.39, 2.12.50, and 3.4.13']. | 

To apply the abstract  transitivity results of the last section, we need the 

following cutting down lemma. 
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LEMMA 7.3: Let H be a finite-dimensional Hopf algebra , R C A a faithfully flat 

H-Galois extension and k c E any field extension. Then R ~ := R ® E c A ~ :--- 

A ® E is faithfully fiat H ~ -- H ® E-Galois over E.  

Assume P'  E Spec(A') lies over Q' c Spec(R').  Define P := P'  n A and 

Q := Q' N R. Then P E Spec(A) lies over Q E Spec(R). 

Proof: (1) Trivially, R ~ C A' is again faithfully flat HqGalois.  First we show for 

any ideal I in R and I '  := I ® E, ( I '  : H ' )  ;3 R = ( ( I '  n R) : H).  

To prove that  ( I '  : H ' )  n R is contained in the right hand side, note that  

((I'  : H ' )A ' )  G A is a sub H-comodule,  hence is extended. Therefore, 

( ( I ' :  H')A')  N A = ( ( ( I '  : H')A')  N R )A  = ( ( I ' :  H') N R)A.  

Since ( I '  : H')A '  = A ' ( I '  : H ' ) ,  by the same argument on the other side we get 

((I'  : H')  N R ) A  = A(( I '  : H') N R). Thus ( I '  : H ' ) N R i s  H - s t a b l e ,  hence 

contained in ( ( I '  N R) : H).  

To prove the other inclusion, let J be any H-stable ideal of R contained in I ' .  

Then J A  = A J  and ( JE)A '  = A ' (JE) .  Hence J c J E  C ( I ' :  H ' ) .  

(2) To prove the lemma, note that  P and Q are prime ideals by 7.2(1). By 

assumption P '  (-I R'  = (Q' : H ' ) .  Hence 

P A R =  P ' N R =  ( q ' :  H ' ) N R =  (Q:  H),  

where the last equality follows from (1). | 

THEOREM 7.4: Let H be a finite-dimensional Hopf algebra and k C E a field 

extension. Let t be a positive integer. 

(1) l f  H ® E has t-LO (resp. t-eoLO), then so does H. 

(2) Assume H ® E has t-eoLO and GU (resp. t-LO and eoGU). Then H has 

GU (resp. eoGU). 

(3) Assume H ® E has t-coLO and INC (resp. t-LO and INC) and k C E is 

algebraic. Then H has INC (resp. eoINC). 

Proof: Let R C A be faithfully flat H-Galois. Then R ~ := R ® E C A ~ :-- A ® E 

is faithfully flat H~-Galois, where H p := H ® E. We consider "lying over" for the 

Galois extensions R C A and R ~ C A ~ as in 2.3(1) and for R C R ~ and A C A ~ 

as in 7.2. The idea in each case is to apply 6.6 for R C R ~ C A'. Cutting down 

by 7.3 then yields the desired result. Note that  R C R ~ has (1, 1)-coLO, GU and 

INC by 7.2. By duality (4.3), it suffices to prove the unbracketed statements.  

(1) Assume H '  has t-LO. Let P E Spec(A). By 7.2(1), P '  n A = P for some 

P '  C Spec(A'). By 6.6(1), R C A' has (t ,n)-coLO, where n = d i m H .  Hence 



Vol. 112, 1999 PRIME IDEALS IN HOPF GALOIS EXTENSIONS 227 

there are Q1 , . - . ,  Q ,  E Spec(R) such that P '  lies over all Qi and (n i~ l  Q~)t c 

P ' N R  = P A R .  Thus for all i, P '  lies over some Q~ • Spec(R') with Q~NR = Q~. 

Hence P lies over all Qi by 7.3. 

(2) Let Q2 c Q1 in Spec(R) and P2 • Spec(A) lying over Q2. By 7.2(1), 

P ~ N A  = P2 for some P~ • Spec(A'). By 6.6(2), R c A' has GU and there 

is a prime P~ in A ~ lying over Q1 and containing P~. Thus P~ lies over some 

Q~ • Spec(R') with Q~ N R  -- Q1. Then P1 := P{ N A  ~ P2 is in Spec(A) 

by 7.2(1) and lies over Q1 by 7.3. 

(3) Let P2 C P1 in Spec(A). By 7.2(1) and (2), there are P~ C P~ in Spec(A') 

such that  P~ n A = P2 and P~ n A = P1- Since R C A' has INC by 6.6(3), 

P 2 N R = P ~ N R C P ; N R = P I N R .  It 

8. C o n s e q u e n c e s  

Let H be a finite-dimensional Hopf algebra.  A n o r m a l  ser ies  

Hn+I = k  c Hn c ""  C Ho = H 

is a sequence of sub Hopf algebras such that H~+I is a normal sub Hopf algebra 

of Hi for all 0 < i < n. The quotient Hopf algebras/4i := H j H i H + I  are the 

q u o t i e n t s  of the normal series. 

From 6.6 we immediately get 

COROLLARY 8.1: Suppose H has a normal series with quotients [-Ii, 0 < i < n. 

Let si, ti for 0 < i < n be positive integers. 

(1) Assume all [Ii have si-coLO. Then H has s-coLO, where s := S0Sl . . . sn ,  

and i f  all quotients have INC (resp. GU), then so does H. 

(2) Assume all YI~ have ti-LO. Then H has t-LO, where t := tot1 .. • tn, and if  

alI quotients have colNC (resp. coGU), then so does H. 

We first want to derive consequences from 8.1 and 7.4 together with known 

results for pointed Hopf algebras in 4.10. 

We call H so lvable  (resp. cosolvable)  if H has a normal series with commu- 

tative (resp. cocommutative) quotients. 

LEMMA 8.2:  

(1) Let K be a sub Hopf algebra and L a normal sub Hopf algebra of H. Then 

the canonical map K / K ( K N L) + --+ H / H L + is injective. Thus the second 

isomorphism theorem for finite-dimensional Hopf algebras holds, that is, 

K / K ( K  N L) + ~-~ ( K L ) / ( K L ) L  +. 
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(2) Let K be a sub Hopf algebra and [-I a quotient Hopf algebra of H. f f  H is 

solvable (resp. cosolvable), then so are K and [-I. 

Proof (1) We first have to show that  K N H L  + = K ( K N L )  +. Let p: H - ~  

H / H L  + be the canonical map. Consider H as a left p(H)-comodule algebra via 

(pQid)A.  Then L -- c°P(H)H by [T, Th. 1] since H is (left) faithfully fiat over L 

by [NZ]. Hence KNL = c°P(K)K. Again by [NZ], K is (right) faithfully coflat over 

p(K) since K* is free over p(K)*. Hence we get from [T, Th. 2] that  K n HL + = 

K(c°p(K)K) +. Thus K N H L  + = K(KNL)  +, and so K / K ( K N L )  + --4 H/HL+ is 

injective. It  then follows that  the canonical map K / K ( K N L )  + --4 (KL) / (KL)L  + 

is injective; it is clearly surjective. 

(2) Let Hn+l = k C Hn C "'" C Ho = H be a normal series of H.  Define 

Ki := Hi N K for all i. Then 

k = K ~ + ,  c Kn  c . . .  c K i  c Ko = K 

is a normal series of K.  For all i, the canonical map /~i := Ki /K iK+I  --4 

H~/HiH~I =: / t~  is injective by (1) applied to the sub Hopf algebra Ki and the 

normal sub Hopf algebra Hi+l of Hi. 

Similarly, let 7r: H --4 / t  be the canonical projection and define/4i :-- ~r(Hi) 

for all i. Then 

/ t~+~  = k C / 4 ~  C -. • C / 4 o  = / t  

is a normal series for H,  and for all i, the natural map from Hi/HiH~I  to 

Hi/HiH~I  is surjective. Now the claim is obvious. II 

THEOREM 8.3: Let t = d i m H .  

(1) If H is cosolvable, then H has t-coLO and GU. 

(2) If H is solvable, then H has t-LO and coGU. 

(3) If H is solvable and cosolvable, for example if H is solvable and 

cocommutative, then H has t-LO, t-coLO, GU, coGU, INC and coINC. 

Proof: (1) Let K be one of the quotients of a normal series of H with cocommuta- 

tive quotients. Then K®k,  k an algebraic closure of k, is pointed. Hence, by 4.10 

and 7.4, K has s-coLO and GU, where s -- d imK.  By [M, 3.3.1], t = d i m H  

is the product of the dimensions of all the quotients of the normal series. Then 

by 8.1(1), H has t-coLO and GU. 

(2) This is shown as (1) using 4.3. 

(3) Let Hn+l = k C Hn C --- C H0 = H be a normal series of H with 

cocommutat ive quotients /ti .  Since H is solvable, all / t i  are solvable by 8.2. 
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Thus the quotients /}i have t-LO as seen in the proof of (2). By 4.10 and 7.4 

they also have coINC and coGU. Therefore, H has coINC and coOU by 8.1(2). 

Starting with a normal series with commutative quotients, it follows similarly 

that H has INC. II 

Remark 8.4: Let u(9 ) be the restricted universal enveloping algebra of a finite- 

dimensional restricted Lie algebra g. If ~ is abelian, then Chin [Ch87, Th. 19] 

showed that any crossed product extension R C R#~u(o) satisfies INC. By 8.3(3), 

the same result holds for solvable Lie algebras 9. In fact, u(9) has all the Krull 

relations for solvable g by 8.3(3). 

The question as to whether cocommutative Hopf algebras have all the Krull 

relations can be reduced to the (open) case of restricted Lie algebras. This follows 

from 8.1 and 7.4, since over an algebraically closed field in positive characteristic 

any cocommutative Hopf algebra has an irreducible normal sub Hopf algebra H 1 

with quotient being a group algebra, and any irreducible cocommutative Hopf 

algebra has a normal series with quotients of the form u(9), fl a restricted Lie 

algebra [Ga]. 

Theorem 8.3 can be greatly improved for semisimple Hopf algebras. 

We call H semiso lvab le  if H has a normal series with commutative or 

cocommutative quotients. The next result improves [MS, Theorem 7.12]. 

THEOREM 8.5: Let H be semisimple and semisolvable of dimension t. Then H 

has 1-LO, t-coLO, GU, coGU, INC, coINC. In particular if R C A is faithfully fiat 

H-Galois and R is H-prime, for example if R is an H-prime H-module algebra 

and A = RCpH, then 

(1) A has at most n < d i m H  minimM primes, call them P1, . . . ,  Pn; 

(2) P in Spec(d) is minimal if and only if P A R = {0}; 

(3) N, Pi = {0}. 

Proof: Note that (1)-(3) follow from 1-LO and INC. 

We first consider the case when H = kG. Then H has all the Krull relations, 

as discussed in Example 4.9; in fact, H has 1-coLO. Since H is semisimple, H 

also has 1-LO. This follows from 4.5(1) and 4.6, since in the semisimple case 

R # H  is semiprime for any H-prime H-module algebra R by [FM]. By dualizing 

4.9 we see that  (leG)* has all the Krull relations and satisfies 1-LO. 

Now say H is commutative. By extending the base field and using Theorem 

7.4, we may assume that H = (kG)* (we only need an algebraic extension for 

this), and thus have the desired conclusion. 
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If H is cocommutative, then H is pointed after a finite field extension of the 

base field. Thus we may assume that H = K # k G ,  where K = (kL)* for some 

groups L, G (using some classical structure theorems as we did in [MS, 7.12]). 

But now K is normal in H, so we may use transitivity to get all the desired Krull 

relations for H. 

Now use transitivity on any appropiate normal series with commutative or 

cocommutative quotients. | 

THEOREM 8.6: Let H be cosemisimple and semisolvable of dimension t. Then 

H has t-LO, 1-coLO, GU, coG[/, Inc, colNC. 

Proof: As in the previous proof it suffices to show the result for commutative and 

cocommutative Hopf algebras H. If H is commutative (resp. cocommutative) and 

cosemisimple, then H* is cocomxnutative (resp. commutative) and semisimple. 

Hence H has the required Krull relations by 8.5 (for H*) and 4.3. | 

COROLLARY 8.7: Assume one of the following: 

(1) H is semisimple, cosemisimple and semisolvable. 

(2) H is semisimple, the characteristic of k is 0 and the dimension of H is a 

power of a prime. 

Then H has 1-LO, 1-coLO, GU, coGU, INC, colNC. 

Proof: In case (1) this follows from 8.5 and 8.6. Assume (2). By 7.4 it suffices to 

consider the case when k is algebraically closed. Then H contains a non-trivial 

central group-like element by Masuoka and Zhu [Ma96]. Hence H contains a non- 

trivial normal sub Hopf algebra K which is a (commutative) semisimple group 

algebra and therefore satisfies the required Krull relations by (1) (or by 4.9, since 

K and K* ~ K are group algebras). Alternatively, one can show that (2) is a 

special case of (1) by applying [Ma96] to H*. II 

We now specialize to the semiprimeness problem raised in [CF]. Let H be a 

semisimple Hopf algebra and R a left H-module algebra which is H-pr ime.  Then 

the question is whether the smash product R # H  is semiprime. 

De~nition 8.8: (1) H is called s t r o n g l y  semis imple ,  if for all left H-module 

algebras A with ring of invariants R := A H and for all P E Spec(A), P N R is a 

semiprime ideal in R. 

(2) H is called s t r o n g l y  cosemis imple ,  if for all right H-comodule algebras 

A with ring of coinvariants R := A c°H and for all P C Spec(A), P N R is a 

semiprime ideal in R. 
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Remark 8.9: (1) H is strongly cosemisimple if and only if H* is strongly 

semisimple. 

(2) If H is strongly semisimple (resp. strongly cosemisimple), then H is 

semisimple (resp. cosemisimple). 

(3) Any sub Hopf algebra of a strongly cosemisimple Hopf algebra is strongly 

cosemisimple. 

(4) Any quotient Hopf algebra of a strongly semisimple Hopf algebra is strongly 

semisimple. 

Proof." (1) is clear from the definition. 

(2) Let H be strongly semisimple. Then H is a left H*-module algebra and 

H # H *  is a right H*-comodule algebra with H*-coinvariants R = H, hence a 

left H-module algebra. Moreover, H # H *  ~ Mn (k), where n = dim H, is prime. 

Hence H is semiprime by assumption. Thus H is semisimple. 

(3) Let K be a sub Hopf algebra of H. Then any right K-comodule algebra A 

is also a right H-comodule algebra with the same ring of coinvariants R. Hence 

if H is cosemisimple, P n R is semiprime for all P E Spec(A). 

(4) is dual to (3). I 

THEOREM 8.10: The following are equivalent: 

(1) H is strongly semisimple. 

(2) For all faithfully fiat H-Galois extensions R C A with R being H-prime, A 

is semiprime. 

(3) For all left H-module algebras R which are H-prime, R ~ H  is semiprime. 

Proof: (1) ~ (2): Let R C A be faithfully fiat H-Galois and R be H-prime. 

Then by 4.2, A#H*  is an H-prime left H-module algebra with (AC/=H*) H = A. 

Hence P N A = {0} for some P E Spec(A#H*) by 2.2(3). Since H is strongly 

semisimple, {0} is a semiprime ideal, and A is semiprime. 

(2)0(3) holds trivially. 

(3)o(1)  Let A be any left H-module algebra and R := A H. By (3), H is 

semisimple (apply (3) to the trivial H-module algebra k). Hence Section 5 ap- 

plies. By 5.4(1), ~( (P  : H ) # H )  = PAR.  We will show below that  (P : H ) # H  is 

a semiprime ideal in ACpH. Hence (P : H)C/=H is an intersection of prime ideals 

in A # H .  Since p in 5.4 preserves intersections, P N R = qo((P : H)~CH) is an 

intersection of qo-images of prime ideals in R. Then P n R is an intersection of 

prime ideals, since for any prime ideal L of A # H ,  ~(L) is a prime ideal if e ~ L 

by 5.2 or ~(L) = R if e C L. 
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It remains to show that  for any I E H-Spec(A) (such as (P  : H)),  I # H  is a 

semiprime ideal in A#H.  To prove this, let fi~ := A/I .  Then A is an H-prime 

left H-module algebra. By assumption (3), A ~ H  is semiprime. Hence {0} in 

A ~ H  is an intersection of prime ideals in A # H ,  and I # H  is the intersection of 

their inverse images in A#H.  Thus I@H is semiprime. | 

THEOREM 8.11 : 

(1) 
(2) 

(3) 

The following are equivalent: 

H is strongly cosemisimple. 

For all faithfully flat H-Galois extensions R C A with R being H-prime , 
R is semiprime. 

For all left H-module algebras R which are H-prime, R is semiprime. 

Proof: This follows by duality from 8.9. 

(1) ~ (2): By 8.9, H* is strongly semisimple. Hence H* satisfies condition (3) 

in 8.10. To show (2), let R C A be faithfully fiat H-Galois with R being H-prime. 

Then A is an H*-prime left H*-module algebra by 2.2(1). By 8.10(3) for H*, 

A~=H* is semiprime. Hence R is semiprime by 1.4. 

(2) ==~ (3) is trivial (look at the H-Galois extension R C R#H).  

(3) ~ (1): By 8.10, it suffices to verify condition (2) in 8.10 for H*. Thus let 

R C A be a faithfully fiat H*-Galois extension with R being H*-prime. By 2.2(1) 

again, A is an H-prime module algebra. Hence A is semiprime by assumption 

(3). | 

We now introduce H-semiprime ideals in order to prove H-semiprime versions 

of the two previous theorems. 

Definition 8.12: Let R C A be faithfully flat H-Galois. An H-stable ideal N of R 

is H - s e m i p r i m e  if for any H-stable ideal I of R, 12 C N implies I C N. R 

itself is called H-semiprime if {0} is an H-semiprime ideal. 

Note that 8.12 defines as a special case the usual notion of an H-semiprime 

ideal in any left H-module algebra R (where A = R~H).  

The classical Levitzki-Nagata argument can be extended to get an analog of 

the usual characterization of semiprime ideals: 

LEMMA 8.13: Assume that H is finite-dimensional. Then an H-stable ideal N of 

R is H-semiprime if and only if N = N P, the intersection of all P C H-Spec(R) 

with P D N. 

Proof'. By Lemma 1.6 and the remark which follows it, we may assume that  

N = {0}; that  is, R is H-semiprime. Let I = N P, the intersection of all 

P e H-Spec(R); we claim I = {0}. 
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If not, then since I is H-stable ,  there exists a finitely generated H-stable ideal 

I1 with {0} • I1 C I, by Corollary 1.5. Now I~ ¢ {0} since R is H-semiprime, 

and thus again by Corollary 1.5 we may choose a finitely generated H-stable 

ideal 0 ¢ / 2  C 112. Continuing, we obtain a decreasing chain of finitely generated 

H-stable ideals {I~} such that 0 ¢ In C ( In- l )  2 for all n > 0. 

We claim that we may apply Zorn's lemma to the set 

S = {J  <1 R I J H-stable , In ~ J, for all n_> 1}. 

For, S is non-empty since {0} E S, and S is closed under ascending unions since 

all the In are finitely generated. Thus we may choose P maximal in S. 

We claim that P is H-pr ime.  For if L M  C P with L D P and M D P, for L, M 

H-stable ideals of R, then I~ C L and It,, C M for some n, m by the maximality 

of P. Say m >_ n; then Im+l C (L=) 2 c I,~In c L M  C P, a contradiction. Thus 

P is H-prime . But I ~ P, a contradiction. Thus I = {0}. | 

COROLLARY 8.14: IIl 8.10 and 8.11, (2) (resp. (3)) is equivalent to (2)' (resp. 

(3)') where the condition H-prime is replaced by H-semiprime. 

Proof: This follows in a standard way from 8.13 using 1.6 and 1.7. | 

We finally note that our previous results about the Krull relations for semi- 

solvable Hopf algebras give a large class of examples of strongly semisimple or 

cosemisimple Hopf algebras. 

Remark 8.15: If H has 1-LO (resp. 1-coLO), then H is strongly semisimple (resp. 

strongly cosemisimple). 

Proof'. (1) Recall from 4.5 that H has 1-LO if and only if for all faithfully flat Hopf 

Galois extensions R C A with R being H-prime there exist P1,. . . ,  Pn C Spec(R) 
h n with n < dim(H) such t at Ni=l Pi = {0} and PinR = {0} for all i. In particular 

A then is semiprime. Hence if H has l -L0  then H is strongly semisimple by 

8.10(2). 

(2) If H has l-coLO, then H* has I-LO by 4.3, hence H* is strongly semisimple 

by (1), and H is strongly cosemisimple by 8.9. | 

COROLLARY 8.16: 

(i) Let H be semisimple (resp. cosemisimple) and semisolvable. Then H is 

strongly semisimple (resp. strongly cosemisimple). 

(2) Let H be semisimple and assume that the characteristic of k is 0 and the 

dimension of H is a power of a prime. Then H is strongly semisimple and 

strongly cosemisimple. 
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Proof." Using the previous lemma, (1) follows from 8.5 and 8.6 and (2) follows 

from 8.7. | 
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